Loading…

Solid‐state formation mechanisms of core–shell microstructures in (Zr,Ta)B 2 ceramics

Transition metal diborides with core–shell microstructures have demonstrated excellent mechanical properties at elevated temperatures. Previous studies concluded that core–shell microstructures were formed by liquid‐assisted mass transport mechanisms, but in this study, we propose a solid‐state form...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2022-05, Vol.105 (5), p.3147-3152
Main Authors: Dorner, Anna N., Monteverde, Frédéric, Fahrenholtz, William G., Hilmas, Gregory E.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3
cites cdi_FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3
container_end_page 3152
container_issue 5
container_start_page 3147
container_title Journal of the American Ceramic Society
container_volume 105
creator Dorner, Anna N.
Monteverde, Frédéric
Fahrenholtz, William G.
Hilmas, Gregory E.
description Transition metal diborides with core–shell microstructures have demonstrated excellent mechanical properties at elevated temperatures. Previous studies concluded that core–shell microstructures were formed by liquid‐assisted mass transport mechanisms, but in this study, we propose a solid‐state formation mechanism for core‐shell microstructures in (Zr,Ta)B 2 ceramics produced by reaction hot pressing and in ZrB 2 ‐TaB 2 diffusion couples. Diffusion couple experiments demonstrated that core–shell microstructures developed as a result of Ta diffusion along ZrB 2 grain boundaries, which occurred concurrently with lattice diffusion of Ta into ZrB 2 . These findings suggest that with optimization of batching and processing parameters, core–shell diboride materials may be formed through solid‐state processes rather than liquid‐assisted processes, which could assist in raising the upper temperature limits of use for these materials.
doi_str_mv 10.1111/jace.18363
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jace_18363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jace_18363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoOFY3PkGWKk7NP5lLZqnFGxRcWBe6Gf5k_tApc5EkXXTXRxB8wz6JHfVsDgcOh8PH2DmIKex1s0JDU1AylwcsgiyDOCkhP2SRECKJC5WIY3bi_WofoVRpxN5fh7apd9svHzAQt4PrMDRDzzsyS-wb33k-WG4GR7vtt19S2_KuMW7wwa1NWDvyvOn5xYe7XuDlHU-4IYf7hj9lRxZbT2f_PmFvD_eL2VM8f3l8nt3OYwM5hFhqXchSpIWkUpMSCnNVAgpjcp3pBEFllJag0zq1lAldo60BUdqskIVELSfs6m93POUd2erTNR26TQWiGqFUI5TqF4r8ASRpWBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solid‐state formation mechanisms of core–shell microstructures in (Zr,Ta)B 2 ceramics</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Dorner, Anna N. ; Monteverde, Frédéric ; Fahrenholtz, William G. ; Hilmas, Gregory E.</creator><creatorcontrib>Dorner, Anna N. ; Monteverde, Frédéric ; Fahrenholtz, William G. ; Hilmas, Gregory E.</creatorcontrib><description>Transition metal diborides with core–shell microstructures have demonstrated excellent mechanical properties at elevated temperatures. Previous studies concluded that core–shell microstructures were formed by liquid‐assisted mass transport mechanisms, but in this study, we propose a solid‐state formation mechanism for core‐shell microstructures in (Zr,Ta)B 2 ceramics produced by reaction hot pressing and in ZrB 2 ‐TaB 2 diffusion couples. Diffusion couple experiments demonstrated that core–shell microstructures developed as a result of Ta diffusion along ZrB 2 grain boundaries, which occurred concurrently with lattice diffusion of Ta into ZrB 2 . These findings suggest that with optimization of batching and processing parameters, core–shell diboride materials may be formed through solid‐state processes rather than liquid‐assisted processes, which could assist in raising the upper temperature limits of use for these materials.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18363</identifier><language>eng</language><ispartof>Journal of the American Ceramic Society, 2022-05, Vol.105 (5), p.3147-3152</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3</citedby><cites>FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3</cites><orcidid>0000-0001-8971-1199 ; 0000-0002-8497-0092 ; 0000-0002-9766-2275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dorner, Anna N.</creatorcontrib><creatorcontrib>Monteverde, Frédéric</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Hilmas, Gregory E.</creatorcontrib><title>Solid‐state formation mechanisms of core–shell microstructures in (Zr,Ta)B 2 ceramics</title><title>Journal of the American Ceramic Society</title><description>Transition metal diborides with core–shell microstructures have demonstrated excellent mechanical properties at elevated temperatures. Previous studies concluded that core–shell microstructures were formed by liquid‐assisted mass transport mechanisms, but in this study, we propose a solid‐state formation mechanism for core‐shell microstructures in (Zr,Ta)B 2 ceramics produced by reaction hot pressing and in ZrB 2 ‐TaB 2 diffusion couples. Diffusion couple experiments demonstrated that core–shell microstructures developed as a result of Ta diffusion along ZrB 2 grain boundaries, which occurred concurrently with lattice diffusion of Ta into ZrB 2 . These findings suggest that with optimization of batching and processing parameters, core–shell diboride materials may be formed through solid‐state processes rather than liquid‐assisted processes, which could assist in raising the upper temperature limits of use for these materials.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEYhYMoOFY3PkGWKk7NP5lLZqnFGxRcWBe6Gf5k_tApc5EkXXTXRxB8wz6JHfVsDgcOh8PH2DmIKex1s0JDU1AylwcsgiyDOCkhP2SRECKJC5WIY3bi_WofoVRpxN5fh7apd9svHzAQt4PrMDRDzzsyS-wb33k-WG4GR7vtt19S2_KuMW7wwa1NWDvyvOn5xYe7XuDlHU-4IYf7hj9lRxZbT2f_PmFvD_eL2VM8f3l8nt3OYwM5hFhqXchSpIWkUpMSCnNVAgpjcp3pBEFllJag0zq1lAldo60BUdqskIVELSfs6m93POUd2erTNR26TQWiGqFUI5TqF4r8ASRpWBY</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Dorner, Anna N.</creator><creator>Monteverde, Frédéric</creator><creator>Fahrenholtz, William G.</creator><creator>Hilmas, Gregory E.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8971-1199</orcidid><orcidid>https://orcid.org/0000-0002-8497-0092</orcidid><orcidid>https://orcid.org/0000-0002-9766-2275</orcidid></search><sort><creationdate>202205</creationdate><title>Solid‐state formation mechanisms of core–shell microstructures in (Zr,Ta)B 2 ceramics</title><author>Dorner, Anna N. ; Monteverde, Frédéric ; Fahrenholtz, William G. ; Hilmas, Gregory E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorner, Anna N.</creatorcontrib><creatorcontrib>Monteverde, Frédéric</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Hilmas, Gregory E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorner, Anna N.</au><au>Monteverde, Frédéric</au><au>Fahrenholtz, William G.</au><au>Hilmas, Gregory E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid‐state formation mechanisms of core–shell microstructures in (Zr,Ta)B 2 ceramics</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-05</date><risdate>2022</risdate><volume>105</volume><issue>5</issue><spage>3147</spage><epage>3152</epage><pages>3147-3152</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Transition metal diborides with core–shell microstructures have demonstrated excellent mechanical properties at elevated temperatures. Previous studies concluded that core–shell microstructures were formed by liquid‐assisted mass transport mechanisms, but in this study, we propose a solid‐state formation mechanism for core‐shell microstructures in (Zr,Ta)B 2 ceramics produced by reaction hot pressing and in ZrB 2 ‐TaB 2 diffusion couples. Diffusion couple experiments demonstrated that core–shell microstructures developed as a result of Ta diffusion along ZrB 2 grain boundaries, which occurred concurrently with lattice diffusion of Ta into ZrB 2 . These findings suggest that with optimization of batching and processing parameters, core–shell diboride materials may be formed through solid‐state processes rather than liquid‐assisted processes, which could assist in raising the upper temperature limits of use for these materials.</abstract><doi>10.1111/jace.18363</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8971-1199</orcidid><orcidid>https://orcid.org/0000-0002-8497-0092</orcidid><orcidid>https://orcid.org/0000-0002-9766-2275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-05, Vol.105 (5), p.3147-3152
issn 0002-7820
1551-2916
language eng
recordid cdi_crossref_primary_10_1111_jace_18363
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
title Solid‐state formation mechanisms of core–shell microstructures in (Zr,Ta)B 2 ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%E2%80%90state%20formation%20mechanisms%20of%20core%E2%80%93shell%20microstructures%20in%20(Zr,Ta)B%202%20ceramics&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Dorner,%20Anna%20N.&rft.date=2022-05&rft.volume=105&rft.issue=5&rft.spage=3147&rft.epage=3152&rft.pages=3147-3152&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18363&rft_dat=%3Ccrossref%3E10_1111_jace_18363%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c161t-3bb7390473e9be808a6891a0cc6b5b2a185e491b4d4fe50bdafd1aa3f57373ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true