Loading…

Bandgap engineering—Influence of the evolution of (Zn/Mg)Al 2 O 4 :Cr 3+ spinel phosphors on the photoluminescence properties

As a luminescent center ion in materials for deep red and near‐infrared light, Cr 3+ has been extensively studied in octahedral host materials. In this study, using zinc aluminate (ZnAl 2 O 4 ) and magnesium aluminate (MgAl 2 O 4 ) spinels with abundant octahedra as substrates, a series of Zn 1− x M...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2024-06, Vol.107 (6), p.4197-4208
Main Authors: Qiang, Ming, Yin, Xiaomeng, Tang, Yang, Xu, Xueke, Lin, Hui, Zhang, Dawei
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a luminescent center ion in materials for deep red and near‐infrared light, Cr 3+ has been extensively studied in octahedral host materials. In this study, using zinc aluminate (ZnAl 2 O 4 ) and magnesium aluminate (MgAl 2 O 4 ) spinels with abundant octahedra as substrates, a series of Zn 1− x Mg x Al 2 O 4 :0.5%Cr 3+ ( x  = 0, 0.2, 0.4, 0.6, 0.8, and 1) fluorescent powders were first prepared via a high‐temperature solid‐state method. The influence of different Mg/Zn ratios on (Zn/Mg)Al 2 O 4 :0.5%Cr 3+ optical properties was thoroughly explored. Experimental results show that an increase in the Mg/Zn ratio reduces the crystal field strength ( D q ) and leads to distortion of the [AlO 6 ] octahedra, resulting in broadening of the photoluminescence emission spectrum. Furthermore, the addition of Mg gradually reduces the formation of inverse spinel. An appropriate Mg/Zn ratio can improve luminescent intensity and quantum efficiency. In summary, this paper, through bandgap engineering by adjusting the Mg/Zn ratio, provides a detailed account of the changes in optical properties and the underlying mechanisms during the transition from ZnAl 2 O 4 :0.5%Cr 3+ to MgAl 2 O 4 :0.5%Cr 3+ spinels. It offers valuable insights for further research on the practical applications of Cr 3+ in areas such as lighting displays and bioimaging.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.19728