Loading…

Allometries of cell and tissue anatomy and photosynthetic rate across leaves of C 3 and C 4 grasses

Allometric relationships among the dimensions of leaves and their cells hold across diverse eudicotyledons, but have remained untested in the leaves of grasses. We hypothesised that geometric (proportional) allometries of cell sizes across tissues and of leaf dimensions would arise due to the coordi...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2024-01, Vol.47 (1), p.156-173
Main Authors: Baird, Alec S., Taylor, Samuel H., Reddi, Sachin, Pasquet‐Kok, Jessica, Vuong, Christine, Zhang, Yu, Watcharamongkol, Teera, John, Grace P., Scoffoni, Christine, Osborne, Colin P., Sack, Lawren
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Allometric relationships among the dimensions of leaves and their cells hold across diverse eudicotyledons, but have remained untested in the leaves of grasses. We hypothesised that geometric (proportional) allometries of cell sizes across tissues and of leaf dimensions would arise due to the coordination of cell development and that of cell functions such as water, nutrient and energy transport, and that cell sizes across tissues would be associated with light‐saturated photosynthetic rate. We tested predictions across 27 globally distributed C 3 and C 4 grass species grown in a common garden. We found positive relationships among average cell sizes within and across tissues, and of cell sizes with leaf dimensions. Grass leaf anatomical allometries were similar to those of eudicots, with exceptions consistent with the fewer cell layers and narrower form of grass leaves, and the specialised roles of epidermis and bundle sheath in storage and leaf movement. Across species, mean cell sizes in each tissue were associated with light‐saturated photosynthetic rate per leaf mass, supporting the functional coordination of cell sizes. These findings highlight the generality of evolutionary allometries within the grass lineage and their interlinkage with coordinated development and function. Allometries among leaf cell sizes and of cell sizes with leaf dimensions and photosynthetic rate hold across grass species, supporting their basis in developmental and functional coordination.
ISSN:0140-7791
1365-3040
DOI:10.1111/pce.14741