Loading…
The classification of the indecomposable liftable modules in blocks with cyclic defect groups
Let G be a finite group, let k be an algebraically closed field of positive characteristic p and let B be a block of kG with cyclic defect groups. We classify the indecomposable B‐modules which are liftable with respect to a splitting p‐modular system with residue class field k. The indecomposable n...
Saved in:
Published in: | The Bulletin of the London Mathematical Society 2012-10, Vol.44 (5), p.974-980 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2754-3edfeb510cd9fa4483eaf5de8964b92cd212a5cb48781bcce6f16499f87292b93 |
---|---|
cites | |
container_end_page | 980 |
container_issue | 5 |
container_start_page | 974 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 44 |
creator | Hiss, Gerhard Naehrig, Natalie |
description | Let G be a finite group, let k be an algebraically closed field of positive characteristic p and let B be a block of kG with cyclic defect groups. We classify the indecomposable B‐modules which are liftable with respect to a splitting p‐modular system with residue class field k. The indecomposable non‐projective modules in B are constructed from certain paths in the Brauer tree of B [G. J. Janusz, ‘Indecomposable modules for finite groups’, Ann. Math. 2 (1969) 209–224.]. We determine those paths that give rise to liftable modules. We also find the characters of the lifts of these modules. |
doi_str_mv | 10.1112/blms/bds025 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bds025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS0974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2754-3edfeb510cd9fa4483eaf5de8964b92cd212a5cb48781bcce6f16499f87292b93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsn_0DusjbJZj9y1KJVqHiwHmVJJhMbzTZls6Xsv3drPXuaYebhhfch5JqzW865mJnQppmxiYnihEy4LFUmuGCnZMKYkFnJVH5OLlL6YoznrOIT8rFaI4WgU_LOg-593NDoaD9e_cYixHYbkzYBafCu_13aaHcB0_inJkT4TnTv-zWFAYIHatEh9PSzi7ttuiRnToeEV39zSt4fH1bzp2z5unie3y0zEFUhsxytQ1NwBlY5LWWdo3aFxVqV0igBdiyhCzCyrmpuALB0vJRKuboSShiVT8nNMRe6mFKHrtl2vtXd0HDWHMw0BzPN0cxI8yO99wGH_9DmfvnyxlQl8x8DM2o-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The classification of the indecomposable liftable modules in blocks with cyclic defect groups</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hiss, Gerhard ; Naehrig, Natalie</creator><creatorcontrib>Hiss, Gerhard ; Naehrig, Natalie</creatorcontrib><description>Let G be a finite group, let k be an algebraically closed field of positive characteristic p and let B be a block of kG with cyclic defect groups. We classify the indecomposable B‐modules which are liftable with respect to a splitting p‐modular system with residue class field k. The indecomposable non‐projective modules in B are constructed from certain paths in the Brauer tree of B [G. J. Janusz, ‘Indecomposable modules for finite groups’, Ann. Math. 2 (1969) 209–224.]. We determine those paths that give rise to liftable modules. We also find the characters of the lifts of these modules.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bds025</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2012-10, Vol.44 (5), p.974-980</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2754-3edfeb510cd9fa4483eaf5de8964b92cd212a5cb48781bcce6f16499f87292b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hiss, Gerhard</creatorcontrib><creatorcontrib>Naehrig, Natalie</creatorcontrib><title>The classification of the indecomposable liftable modules in blocks with cyclic defect groups</title><title>The Bulletin of the London Mathematical Society</title><description>Let G be a finite group, let k be an algebraically closed field of positive characteristic p and let B be a block of kG with cyclic defect groups. We classify the indecomposable B‐modules which are liftable with respect to a splitting p‐modular system with residue class field k. The indecomposable non‐projective modules in B are constructed from certain paths in the Brauer tree of B [G. J. Janusz, ‘Indecomposable modules for finite groups’, Ann. Math. 2 (1969) 209–224.]. We determine those paths that give rise to liftable modules. We also find the characters of the lifts of these modules.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsn_0DusjbJZj9y1KJVqHiwHmVJJhMbzTZls6Xsv3drPXuaYebhhfch5JqzW865mJnQppmxiYnihEy4LFUmuGCnZMKYkFnJVH5OLlL6YoznrOIT8rFaI4WgU_LOg-593NDoaD9e_cYixHYbkzYBafCu_13aaHcB0_inJkT4TnTv-zWFAYIHatEh9PSzi7ttuiRnToeEV39zSt4fH1bzp2z5unie3y0zEFUhsxytQ1NwBlY5LWWdo3aFxVqV0igBdiyhCzCyrmpuALB0vJRKuboSShiVT8nNMRe6mFKHrtl2vtXd0HDWHMw0BzPN0cxI8yO99wGH_9DmfvnyxlQl8x8DM2o-</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Hiss, Gerhard</creator><creator>Naehrig, Natalie</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201210</creationdate><title>The classification of the indecomposable liftable modules in blocks with cyclic defect groups</title><author>Hiss, Gerhard ; Naehrig, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2754-3edfeb510cd9fa4483eaf5de8964b92cd212a5cb48781bcce6f16499f87292b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiss, Gerhard</creatorcontrib><creatorcontrib>Naehrig, Natalie</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiss, Gerhard</au><au>Naehrig, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The classification of the indecomposable liftable modules in blocks with cyclic defect groups</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2012-10</date><risdate>2012</risdate><volume>44</volume><issue>5</issue><spage>974</spage><epage>980</epage><pages>974-980</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>Let G be a finite group, let k be an algebraically closed field of positive characteristic p and let B be a block of kG with cyclic defect groups. We classify the indecomposable B‐modules which are liftable with respect to a splitting p‐modular system with residue class field k. The indecomposable non‐projective modules in B are constructed from certain paths in the Brauer tree of B [G. J. Janusz, ‘Indecomposable modules for finite groups’, Ann. Math. 2 (1969) 209–224.]. We determine those paths that give rise to liftable modules. We also find the characters of the lifts of these modules.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bds025</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2012-10, Vol.44 (5), p.974-980 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_bds025 |
source | Wiley-Blackwell Read & Publish Collection |
title | The classification of the indecomposable liftable modules in blocks with cyclic defect groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20classification%20of%20the%20indecomposable%20liftable%20modules%20in%20blocks%20with%20cyclic%20defect%20groups&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Hiss,%20Gerhard&rft.date=2012-10&rft.volume=44&rft.issue=5&rft.spage=974&rft.epage=980&rft.pages=974-980&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bds025&rft_dat=%3Cwiley_cross%3EBLMS0974%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2754-3edfeb510cd9fa4483eaf5de8964b92cd212a5cb48781bcce6f16499f87292b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |