Loading…
Maximising Neumann eigenvalues on rectangles
Abstract We obtain results for the spectral optimisation of Neumann eigenvalues on rectangles in $ {\mathbb R}^2$ with a measure or perimeter constraint. We show that the rectangle with measure 1 that maximises the $k$th Neumann eigenvalue converges to the unit square in the Hausdorff metric as $k\r...
Saved in:
Published in: | The Bulletin of the London Mathematical Society 2016-10, Vol.48 (5), p.877-894 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We obtain results for the spectral optimisation of Neumann eigenvalues on rectangles in $ {\mathbb R}^2$ with a measure or perimeter constraint. We show that the rectangle with measure 1 that maximises the $k$th Neumann eigenvalue converges to the unit square in the Hausdorff metric as $k\rightarrow \infty $. Furthermore, we determine the unique maximiser of the $k$th Neumann eigenvalue on a rectangle with given perimeter. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdw049 |