Loading…

The Eisenstein cycles as modular symbols

For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society 2018-10, Vol.98 (2), p.329-348
Main Authors: Banerjee, Debargha, Merel, Loïc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63
cites cdi_FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63
container_end_page 348
container_issue 2
container_start_page 329
container_title Journal of the London Mathematical Society
container_volume 98
creator Banerjee, Debargha
Merel, Loïc
description For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin–Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures.
doi_str_mv 10.1112/jlms.12136
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63</originalsourceid><addsrcrecordid>eNp9j01PwzAQRC0EEqFw4RfkiJBSdr2OnR5RVb6UqgfK2UocW6RyGpQFofx7WsKZ01zejOYJcY0wR0R5t4sdz1Ei6RORoNKLzJgcTkUCIFWmEcy5uGDeASAhyETcbN99umrZ7_nTt_vUjS56TitOu775itWQ8tjVfeRLcRaqyP7qL2fi7WG1XT5l5ebxeXlfZo5goTPlifLgXOGVJikR6HCrxtBIKhpFISejQu2MKgqTK60CSA0IyhRSe6w1zcTttOuGnnnwwX4MbVcNo0WwR0d7dLS_jgcYJ_i7jX78h7Qv5fp16vwA1M9Ruw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Eisenstein cycles as modular symbols</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Banerjee, Debargha ; Merel, Loïc</creator><creatorcontrib>Banerjee, Debargha ; Merel, Loïc</creatorcontrib><description>For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin–Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12136</identifier><language>eng</language><subject>11F11 ; 11F20 ; 11F30 (secondary) ; 11F67 (primary)</subject><ispartof>Journal of the London Mathematical Society, 2018-10, Vol.98 (2), p.329-348</ispartof><rights>2018 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63</citedby><cites>FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Banerjee, Debargha</creatorcontrib><creatorcontrib>Merel, Loïc</creatorcontrib><title>The Eisenstein cycles as modular symbols</title><title>Journal of the London Mathematical Society</title><description>For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin–Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures.</description><subject>11F11</subject><subject>11F20</subject><subject>11F30 (secondary)</subject><subject>11F67 (primary)</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j01PwzAQRC0EEqFw4RfkiJBSdr2OnR5RVb6UqgfK2UocW6RyGpQFofx7WsKZ01zejOYJcY0wR0R5t4sdz1Ei6RORoNKLzJgcTkUCIFWmEcy5uGDeASAhyETcbN99umrZ7_nTt_vUjS56TitOu775itWQ8tjVfeRLcRaqyP7qL2fi7WG1XT5l5ebxeXlfZo5goTPlifLgXOGVJikR6HCrxtBIKhpFISejQu2MKgqTK60CSA0IyhRSe6w1zcTttOuGnnnwwX4MbVcNo0WwR0d7dLS_jgcYJ_i7jX78h7Qv5fp16vwA1M9Ruw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Banerjee, Debargha</creator><creator>Merel, Loïc</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201810</creationdate><title>The Eisenstein cycles as modular symbols</title><author>Banerjee, Debargha ; Merel, Loïc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>11F11</topic><topic>11F20</topic><topic>11F30 (secondary)</topic><topic>11F67 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Debargha</creatorcontrib><creatorcontrib>Merel, Loïc</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Debargha</au><au>Merel, Loïc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Eisenstein cycles as modular symbols</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2018-10</date><risdate>2018</risdate><volume>98</volume><issue>2</issue><spage>329</spage><epage>348</epage><pages>329-348</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin–Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures.</abstract><doi>10.1112/jlms.12136</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2018-10, Vol.98 (2), p.329-348
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12136
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects 11F11
11F20
11F30 (secondary)
11F67 (primary)
title The Eisenstein cycles as modular symbols
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Eisenstein%20cycles%20as%20modular%20symbols&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Banerjee,%20Debargha&rft.date=2018-10&rft.volume=98&rft.issue=2&rft.spage=329&rft.epage=348&rft.pages=329-348&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12136&rft_dat=%3Cwiley_cross%3EJLMS12136%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3096-4e335fcc8e46322103112b1fd238d43f5374fbc748875464f02601047826e1b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true