Loading…

Sharp operator‐norm asymptotics for thin elastic plates with rapidly oscillating periodic properties

We analyse a system of partial differential equations describing the behaviour of an elastic plate with periodic moduli in the two planar directions, in the asymptotic regime when the period and the plate thickness are of the same order. Assuming that the displacement gradients of the points of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society 2022-04, Vol.105 (3), p.1634-1680
Main Authors: Cherednichenko, Kirill, Velčić, Igor
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63
cites cdi_FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63
container_end_page 1680
container_issue 3
container_start_page 1634
container_title Journal of the London Mathematical Society
container_volume 105
creator Cherednichenko, Kirill
Velčić, Igor
description We analyse a system of partial differential equations describing the behaviour of an elastic plate with periodic moduli in the two planar directions, in the asymptotic regime when the period and the plate thickness are of the same order. Assuming that the displacement gradients of the points of the plate are small enough for the equations of linearised elasticity to be a suitable approximation of the material response, such as the case in, for example, acoustic wave propagation, we derive a class of ‘hybrid’, homogenisation dimension‐reduction, norm‐resolvent estimates for the plate, under different energy scalings with respect to the plate thickness.
doi_str_mv 10.1112/jlms.12543
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqWw8ASekVLudX6cjKgCCipiKMyR4x_qKqkj21KVjUfgGXkSEsrMdKVP557hEHKNsEBEdrtru7BAlmfpCZlhVlQJ5zmckhkAy5ICgZ-TixB2AJgisBkxm63wPXW99iI6__35tXe-oyIMXR9dtDJQ4zyNW7unuhVhXGjfiqgDPdi4pV70VrUDdUHadtzt_oOOLuvUBPrJG60Ol-TMiDboq787J-8P92_LVbJ-fXxa3q0TmUKVJmkOkDJQvJQl51JlUJZQKMElZk1TgDFK85JVTWUkSJNleclyRCV5w5GpIp2Tm6NXeheC16buve2EH2qEeipUT4Xq30IjjEf4YFs9_EPWz-uXzfHnB0Q4bII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp operator‐norm asymptotics for thin elastic plates with rapidly oscillating periodic properties</title><source>Wiley</source><creator>Cherednichenko, Kirill ; Velčić, Igor</creator><creatorcontrib>Cherednichenko, Kirill ; Velčić, Igor</creatorcontrib><description>We analyse a system of partial differential equations describing the behaviour of an elastic plate with periodic moduli in the two planar directions, in the asymptotic regime when the period and the plate thickness are of the same order. Assuming that the displacement gradients of the points of the plate are small enough for the equations of linearised elasticity to be a suitable approximation of the material response, such as the case in, for example, acoustic wave propagation, we derive a class of ‘hybrid’, homogenisation dimension‐reduction, norm‐resolvent estimates for the plate, under different energy scalings with respect to the plate thickness.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12543</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2022-04, Vol.105 (3), p.1634-1680</ispartof><rights>2022 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63</citedby><cites>FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cherednichenko, Kirill</creatorcontrib><creatorcontrib>Velčić, Igor</creatorcontrib><title>Sharp operator‐norm asymptotics for thin elastic plates with rapidly oscillating periodic properties</title><title>Journal of the London Mathematical Society</title><description>We analyse a system of partial differential equations describing the behaviour of an elastic plate with periodic moduli in the two planar directions, in the asymptotic regime when the period and the plate thickness are of the same order. Assuming that the displacement gradients of the points of the plate are small enough for the equations of linearised elasticity to be a suitable approximation of the material response, such as the case in, for example, acoustic wave propagation, we derive a class of ‘hybrid’, homogenisation dimension‐reduction, norm‐resolvent estimates for the plate, under different energy scalings with respect to the plate thickness.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kL1OwzAURi0EEqWw8ASekVLudX6cjKgCCipiKMyR4x_qKqkj21KVjUfgGXkSEsrMdKVP557hEHKNsEBEdrtru7BAlmfpCZlhVlQJ5zmckhkAy5ICgZ-TixB2AJgisBkxm63wPXW99iI6__35tXe-oyIMXR9dtDJQ4zyNW7unuhVhXGjfiqgDPdi4pV70VrUDdUHadtzt_oOOLuvUBPrJG60Ol-TMiDboq787J-8P92_LVbJ-fXxa3q0TmUKVJmkOkDJQvJQl51JlUJZQKMElZk1TgDFK85JVTWUkSJNleclyRCV5w5GpIp2Tm6NXeheC16buve2EH2qEeipUT4Xq30IjjEf4YFs9_EPWz-uXzfHnB0Q4bII</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Cherednichenko, Kirill</creator><creator>Velčić, Igor</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202204</creationdate><title>Sharp operator‐norm asymptotics for thin elastic plates with rapidly oscillating periodic properties</title><author>Cherednichenko, Kirill ; Velčić, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherednichenko, Kirill</creatorcontrib><creatorcontrib>Velčić, Igor</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherednichenko, Kirill</au><au>Velčić, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp operator‐norm asymptotics for thin elastic plates with rapidly oscillating periodic properties</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>105</volume><issue>3</issue><spage>1634</spage><epage>1680</epage><pages>1634-1680</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We analyse a system of partial differential equations describing the behaviour of an elastic plate with periodic moduli in the two planar directions, in the asymptotic regime when the period and the plate thickness are of the same order. Assuming that the displacement gradients of the points of the plate are small enough for the equations of linearised elasticity to be a suitable approximation of the material response, such as the case in, for example, acoustic wave propagation, we derive a class of ‘hybrid’, homogenisation dimension‐reduction, norm‐resolvent estimates for the plate, under different energy scalings with respect to the plate thickness.</abstract><doi>10.1112/jlms.12543</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2022-04, Vol.105 (3), p.1634-1680
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12543
source Wiley
title Sharp operator‐norm asymptotics for thin elastic plates with rapidly oscillating periodic properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20operator%E2%80%90norm%20asymptotics%20for%20thin%20elastic%20plates%20with%20rapidly%20oscillating%20periodic%20properties&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Cherednichenko,%20Kirill&rft.date=2022-04&rft.volume=105&rft.issue=3&rft.spage=1634&rft.epage=1680&rft.pages=1634-1680&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12543&rft_dat=%3Cwiley_cross%3EJLMS12543%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3093-3500320d78c877cd408806da7c14bb60ffde7829b9fc0cf44582511dc7b712d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true