Loading…
Lower bounds on mapping content and quantitative factorization through trees
We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions...
Saved in:
Published in: | Journal of the London Mathematical Society 2022-09, Vol.106 (2), p.1170-1188 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33 |
container_end_page | 1188 |
container_issue | 2 |
container_start_page | 1170 |
container_title | Journal of the London Mathematical Society |
container_volume | 106 |
creator | David, Guy C. Schul, Raanan |
description | We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal projection. The proof involves new lower bounds and continuity statements for mapping content, and relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz. |
doi_str_mv | 10.1112/jlms.12595 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqWw8As8I6X4OU6djKgCCgpiAObIHy9tqtYutkNVfj0pZWZ690nn3uEQcg1sAgD8drXexAnwoipOyAjEtMqkLNgpGTHGRTYFJs_JRYwrxiAHxkekrv0OA9W-dzZS7-hGbbedW1DjXUKXqHKWfvbKpS6p1H0hbZVJPnTfwzfgaRl8v1jSFBDjJTlr1Tri1d8dk4-H-_fZPKtfH59md3VmuMyLDCpZWoWiMm0LwkhVoNUGhQGubSGnWgslrBGoUZeiBMFQWMtVCawacp6Pyc1x1wQfY8C22YZuo8K-AdYcPDQHD82vhwGGI7zr1rj_h2ye65e3Y-cHTcRi3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower bounds on mapping content and quantitative factorization through trees</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>David, Guy C. ; Schul, Raanan</creator><creatorcontrib>David, Guy C. ; Schul, Raanan</creatorcontrib><description>We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal projection. The proof involves new lower bounds and continuity statements for mapping content, and relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12595</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2022-09, Vol.106 (2), p.1170-1188</ispartof><rights>2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33</citedby><cites>FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>David, Guy C.</creatorcontrib><creatorcontrib>Schul, Raanan</creatorcontrib><title>Lower bounds on mapping content and quantitative factorization through trees</title><title>Journal of the London Mathematical Society</title><description>We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal projection. The proof involves new lower bounds and continuity statements for mapping content, and relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqWw8As8I6X4OU6djKgCCgpiAObIHy9tqtYutkNVfj0pZWZ690nn3uEQcg1sAgD8drXexAnwoipOyAjEtMqkLNgpGTHGRTYFJs_JRYwrxiAHxkekrv0OA9W-dzZS7-hGbbedW1DjXUKXqHKWfvbKpS6p1H0hbZVJPnTfwzfgaRl8v1jSFBDjJTlr1Tri1d8dk4-H-_fZPKtfH59md3VmuMyLDCpZWoWiMm0LwkhVoNUGhQGubSGnWgslrBGoUZeiBMFQWMtVCawacp6Pyc1x1wQfY8C22YZuo8K-AdYcPDQHD82vhwGGI7zr1rj_h2ye65e3Y-cHTcRi3w</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>David, Guy C.</creator><creator>Schul, Raanan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202209</creationdate><title>Lower bounds on mapping content and quantitative factorization through trees</title><author>David, Guy C. ; Schul, Raanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, Guy C.</creatorcontrib><creatorcontrib>Schul, Raanan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, Guy C.</au><au>Schul, Raanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on mapping content and quantitative factorization through trees</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2022-09</date><risdate>2022</risdate><volume>106</volume><issue>2</issue><spage>1170</spage><epage>1188</epage><pages>1170-1188</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal projection. The proof involves new lower bounds and continuity statements for mapping content, and relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz.</abstract><doi>10.1112/jlms.12595</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2022-09, Vol.106 (2), p.1170-1188 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_12595 |
source | Wiley-Blackwell Read & Publish Collection |
title | Lower bounds on mapping content and quantitative factorization through trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20mapping%20content%20and%20quantitative%20factorization%20through%20trees&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=David,%20Guy%20C.&rft.date=2022-09&rft.volume=106&rft.issue=2&rft.spage=1170&rft.epage=1188&rft.pages=1170-1188&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12595&rft_dat=%3Cwiley_cross%3EJLMS12595%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2735-1978dae49cff14c7a5edbce4c12bd576bb4a4dc4ebeb848140e4dd2a810940e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |