Loading…

Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers

We prove vanishing results for the generalized Miller–Morita–Mumford classes of some smooth bundles whose fiber is a closed manifold that supports a nonpositively curved Riemannian metric. We also find, under some extra conditions, that the vertical tangent bundle is topologically rigid.

Saved in:
Bibliographic Details
Published in:Journal of topology 2016-09, Vol.9 (3), p.934-956
Main Authors: Bustamante, Mauricio, Farrell, F. Thomas, Jiang, Yi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863
cites cdi_FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863
container_end_page 956
container_issue 3
container_start_page 934
container_title Journal of topology
container_volume 9
creator Bustamante, Mauricio
Farrell, F. Thomas
Jiang, Yi
description We prove vanishing results for the generalized Miller–Morita–Mumford classes of some smooth bundles whose fiber is a closed manifold that supports a nonpositively curved Riemannian metric. We also find, under some extra conditions, that the vertical tangent bundle is topologically rigid.
doi_str_mv 10.1112/jtopol/jtw015
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jtopol_jtw015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO0934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4evecPVDNNmrZHWfyChRVZvZYknbpZuk1Jslv6761UPHp6Z955mMNDyC2wOwBI7_fR9a6dYmCQnZEF5BlPCpGK878Z5CW5CmHPmEwZlwvy-W6_bG3jSFVXU7NTXpmI3oZoDTWtCgEDdQ0NB-fijupjV7dTM9hp6VzXu2CjPWE7UnP0J6xpYzX6cE0uGtUGvPnNJfl4etyuXpL15vl19bBOTFqASEopDYosUwBlwUtEBtiYppDZdMlLLZgCwXKZsYLzvJRac6UQdaoVU7yQfEmS-a_xLgSPTdV7e1B-rIBVP1KqWUo1S5l4PvODbXH8H662m7cNK7ng39Zwalg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers</title><source>Wiley</source><creator>Bustamante, Mauricio ; Farrell, F. Thomas ; Jiang, Yi</creator><creatorcontrib>Bustamante, Mauricio ; Farrell, F. Thomas ; Jiang, Yi</creatorcontrib><description>We prove vanishing results for the generalized Miller–Morita–Mumford classes of some smooth bundles whose fiber is a closed manifold that supports a nonpositively curved Riemannian metric. We also find, under some extra conditions, that the vertical tangent bundle is topologically rigid.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/jtopol/jtw015</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of topology, 2016-09, Vol.9 (3), p.934-956</ispartof><rights>2016 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863</citedby><cites>FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bustamante, Mauricio</creatorcontrib><creatorcontrib>Farrell, F. Thomas</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><title>Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers</title><title>Journal of topology</title><description>We prove vanishing results for the generalized Miller–Morita–Mumford classes of some smooth bundles whose fiber is a closed manifold that supports a nonpositively curved Riemannian metric. We also find, under some extra conditions, that the vertical tangent bundle is topologically rigid.</description><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4evecPVDNNmrZHWfyChRVZvZYknbpZuk1Jslv6761UPHp6Z955mMNDyC2wOwBI7_fR9a6dYmCQnZEF5BlPCpGK878Z5CW5CmHPmEwZlwvy-W6_bG3jSFVXU7NTXpmI3oZoDTWtCgEDdQ0NB-fijupjV7dTM9hp6VzXu2CjPWE7UnP0J6xpYzX6cE0uGtUGvPnNJfl4etyuXpL15vl19bBOTFqASEopDYosUwBlwUtEBtiYppDZdMlLLZgCwXKZsYLzvJRac6UQdaoVU7yQfEmS-a_xLgSPTdV7e1B-rIBVP1KqWUo1S5l4PvODbXH8H662m7cNK7ng39Zwalg</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Bustamante, Mauricio</creator><creator>Farrell, F. Thomas</creator><creator>Jiang, Yi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201609</creationdate><title>Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers</title><author>Bustamante, Mauricio ; Farrell, F. Thomas ; Jiang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustamante, Mauricio</creatorcontrib><creatorcontrib>Farrell, F. Thomas</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bustamante, Mauricio</au><au>Farrell, F. Thomas</au><au>Jiang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers</atitle><jtitle>Journal of topology</jtitle><date>2016-09</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>934</spage><epage>956</epage><pages>934-956</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>We prove vanishing results for the generalized Miller–Morita–Mumford classes of some smooth bundles whose fiber is a closed manifold that supports a nonpositively curved Riemannian metric. We also find, under some extra conditions, that the vertical tangent bundle is topologically rigid.</abstract><pub>Oxford University Press</pub><doi>10.1112/jtopol/jtw015</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1753-8416
ispartof Journal of topology, 2016-09, Vol.9 (3), p.934-956
issn 1753-8416
1753-8424
language eng
recordid cdi_crossref_primary_10_1112_jtopol_jtw015
source Wiley
title Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20and%20characteristic%20classes%20of%20smooth%20bundles%20with%20nonpositively%20curved%20fibers&rft.jtitle=Journal%20of%20topology&rft.au=Bustamante,%20Mauricio&rft.date=2016-09&rft.volume=9&rft.issue=3&rft.spage=934&rft.epage=956&rft.pages=934-956&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/jtopol/jtw015&rft_dat=%3Cwiley_cross%3ETOPO0934%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2814-966ce455a119839ee01efcf86596679b40a1407650833796bb3aaeeb2ba0a3863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true