Loading…

Root systems and Weyl groupoids for Nichols algebras

Motivated by the work of Kac and Lusztig, we define a root system for a large class of semisimple Yetter–Drinfeld modules over an arbitrary Hopf algebra which admits the symmetry of the Weyl groupoid introduced by Andruskiewitsch and the authors. The obtained combinatorial structure fits perfectly i...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2010-11, Vol.101 (3), p.623-654
Main Authors: Heckenberger, I., Schneider, H.‐J.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3503-db0923200f45ab3e5f70f3352506e1801e09b9e6b58db74471e4ee65d88c73853
cites
container_end_page 654
container_issue 3
container_start_page 623
container_title Proceedings of the London Mathematical Society
container_volume 101
creator Heckenberger, I.
Schneider, H.‐J.
description Motivated by the work of Kac and Lusztig, we define a root system for a large class of semisimple Yetter–Drinfeld modules over an arbitrary Hopf algebra which admits the symmetry of the Weyl groupoid introduced by Andruskiewitsch and the authors. The obtained combinatorial structure fits perfectly into an existing framework of generalized root systems associated to a family of Cartan matrices and provides novel insight into Nichols algebras. We demonstrate the power of our construction with new results on Nichols algebras over finite non-abelian simple groups and symmetric groups.
doi_str_mv 10.1112/plms/pdq001
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_pdq001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS0623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3503-db0923200f45ab3e5f70f3352506e1801e09b9e6b58db74471e4ee65d88c73853</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJEKg4gfcI5OZfdkpUQQEyQnhJaI0Kz_GweCwZjcI_Pc4MqKkmmLOndG5jJ0inCMiHzX1xo-a4gMA99gApYaQS7ncZwMALkONqA7ZkfevAKCFUAMm763dBr71W9r4IH0vgmdq62Dt7Gdjq8IHpXXBvMpfbN2t6zVlLvXH7KBMa08nv3PInq4uHyfTMLm9vplcJGEuFIiwyGDMBQcopUozQaqMoOy-cgWaMAYkGGdj0pmKiyySMkKSRFoVcZxHIlZiyM76u7mz3jsqTeOqTepag2B2wmYnbHrhjsae_qpqav9DzSKZPYDmosuEfabqCvj-y6TuzehIRMpMlyuzWN2JmZhzsxQ_CDRo0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Root systems and Weyl groupoids for Nichols algebras</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Heckenberger, I. ; Schneider, H.‐J.</creator><creatorcontrib>Heckenberger, I. ; Schneider, H.‐J.</creatorcontrib><description>Motivated by the work of Kac and Lusztig, we define a root system for a large class of semisimple Yetter–Drinfeld modules over an arbitrary Hopf algebra which admits the symmetry of the Weyl groupoid introduced by Andruskiewitsch and the authors. The obtained combinatorial structure fits perfectly into an existing framework of generalized root systems associated to a family of Cartan matrices and provides novel insight into Nichols algebras. We demonstrate the power of our construction with new results on Nichols algebras over finite non-abelian simple groups and symmetric groups.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pdq001</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Proceedings of the London Mathematical Society, 2010-11, Vol.101 (3), p.623-654</ispartof><rights>2010 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3503-db0923200f45ab3e5f70f3352506e1801e09b9e6b58db74471e4ee65d88c73853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Heckenberger, I.</creatorcontrib><creatorcontrib>Schneider, H.‐J.</creatorcontrib><title>Root systems and Weyl groupoids for Nichols algebras</title><title>Proceedings of the London Mathematical Society</title><description>Motivated by the work of Kac and Lusztig, we define a root system for a large class of semisimple Yetter–Drinfeld modules over an arbitrary Hopf algebra which admits the symmetry of the Weyl groupoid introduced by Andruskiewitsch and the authors. The obtained combinatorial structure fits perfectly into an existing framework of generalized root systems associated to a family of Cartan matrices and provides novel insight into Nichols algebras. We demonstrate the power of our construction with new results on Nichols algebras over finite non-abelian simple groups and symmetric groups.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOw0AQRVcIJEKg4gfcI5OZfdkpUQQEyQnhJaI0Kz_GweCwZjcI_Pc4MqKkmmLOndG5jJ0inCMiHzX1xo-a4gMA99gApYaQS7ncZwMALkONqA7ZkfevAKCFUAMm763dBr71W9r4IH0vgmdq62Dt7Gdjq8IHpXXBvMpfbN2t6zVlLvXH7KBMa08nv3PInq4uHyfTMLm9vplcJGEuFIiwyGDMBQcopUozQaqMoOy-cgWaMAYkGGdj0pmKiyySMkKSRFoVcZxHIlZiyM76u7mz3jsqTeOqTepag2B2wmYnbHrhjsae_qpqav9DzSKZPYDmosuEfabqCvj-y6TuzehIRMpMlyuzWN2JmZhzsxQ_CDRo0Q</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Heckenberger, I.</creator><creator>Schneider, H.‐J.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201011</creationdate><title>Root systems and Weyl groupoids for Nichols algebras</title><author>Heckenberger, I. ; Schneider, H.‐J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3503-db0923200f45ab3e5f70f3352506e1801e09b9e6b58db74471e4ee65d88c73853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckenberger, I.</creatorcontrib><creatorcontrib>Schneider, H.‐J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckenberger, I.</au><au>Schneider, H.‐J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root systems and Weyl groupoids for Nichols algebras</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2010-11</date><risdate>2010</risdate><volume>101</volume><issue>3</issue><spage>623</spage><epage>654</epage><pages>623-654</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>Motivated by the work of Kac and Lusztig, we define a root system for a large class of semisimple Yetter–Drinfeld modules over an arbitrary Hopf algebra which admits the symmetry of the Weyl groupoid introduced by Andruskiewitsch and the authors. The obtained combinatorial structure fits perfectly into an existing framework of generalized root systems associated to a family of Cartan matrices and provides novel insight into Nichols algebras. We demonstrate the power of our construction with new results on Nichols algebras over finite non-abelian simple groups and symmetric groups.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pdq001</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2010-11, Vol.101 (3), p.623-654
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_pdq001
source Wiley-Blackwell Read & Publish Collection
title Root systems and Weyl groupoids for Nichols algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20systems%20and%20Weyl%20groupoids%20for%20Nichols%20algebras&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Heckenberger,%20I.&rft.date=2010-11&rft.volume=101&rft.issue=3&rft.spage=623&rft.epage=654&rft.pages=623-654&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pdq001&rft_dat=%3Cwiley_cross%3EPLMS0623%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3503-db0923200f45ab3e5f70f3352506e1801e09b9e6b58db74471e4ee65d88c73853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true