Loading…

Projectivity of modules over Fourier algebras

In this paper we study the homological properties of various natural modules associated to the Fourier algebra of a locally compact group. In particular, we focus on the question of identifying when such modules are projective in the category of operator spaces. We will show that projectivity often...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2011-04, Vol.102 (4), p.697-730
Main Authors: Forrest, Brian E., Lee, Hun Hee, Samei, Ebrahim
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3417-85f2ceb0a898eae16fbeca56cf2275c69eb5115afa143b34ecd91c9ae13a9d83
cites
container_end_page 730
container_issue 4
container_start_page 697
container_title Proceedings of the London Mathematical Society
container_volume 102
creator Forrest, Brian E.
Lee, Hun Hee
Samei, Ebrahim
description In this paper we study the homological properties of various natural modules associated to the Fourier algebra of a locally compact group. In particular, we focus on the question of identifying when such modules are projective in the category of operator spaces. We will show that projectivity often implies that the underlying group is discrete and give evidence to show that amenability also plays an important role.
doi_str_mv 10.1112/plms/pdq030
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_pdq030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS0697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3417-85f2ceb0a898eae16fbeca56cf2275c69eb5115afa143b34ecd91c9ae13a9d83</originalsourceid><addsrcrecordid>eNp9j81Kw0AURgdRMFZXvkD2Ejt3_pIspVgrRCzYhbthMrkjKQkTZ9pK3t6UuHZ1NoeP7xByD_QRANhy6Pq4HJpvyukFSUAomjEhPi9JQikTmQKQ1-Qmxj2lVHEuE5Jtg9-jPbSn9jCm3qW9b44dxtSfMKRrfwztRNN9YR1MvCVXznQR7_64ILv18261yar3l9fVU5VZLiDPCumYxZqaoizQIChXozVSWcdYLq0qsZbTFeMMCF5zgbYpwZaTyU3ZFHxBHuZZG3yMAZ0eQtubMGqg-hyqz6F6Dp1smO2ftsPxP1Vvq7cPqsqc_wLUzFj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projectivity of modules over Fourier algebras</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Forrest, Brian E. ; Lee, Hun Hee ; Samei, Ebrahim</creator><creatorcontrib>Forrest, Brian E. ; Lee, Hun Hee ; Samei, Ebrahim</creatorcontrib><description>In this paper we study the homological properties of various natural modules associated to the Fourier algebra of a locally compact group. In particular, we focus on the question of identifying when such modules are projective in the category of operator spaces. We will show that projectivity often implies that the underlying group is discrete and give evidence to show that amenability also plays an important role.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pdq030</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Proceedings of the London Mathematical Society, 2011-04, Vol.102 (4), p.697-730</ispartof><rights>2011 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3417-85f2ceb0a898eae16fbeca56cf2275c69eb5115afa143b34ecd91c9ae13a9d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Forrest, Brian E.</creatorcontrib><creatorcontrib>Lee, Hun Hee</creatorcontrib><creatorcontrib>Samei, Ebrahim</creatorcontrib><title>Projectivity of modules over Fourier algebras</title><title>Proceedings of the London Mathematical Society</title><description>In this paper we study the homological properties of various natural modules associated to the Fourier algebra of a locally compact group. In particular, we focus on the question of identifying when such modules are projective in the category of operator spaces. We will show that projectivity often implies that the underlying group is discrete and give evidence to show that amenability also plays an important role.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j81Kw0AURgdRMFZXvkD2Ejt3_pIspVgrRCzYhbthMrkjKQkTZ9pK3t6UuHZ1NoeP7xByD_QRANhy6Pq4HJpvyukFSUAomjEhPi9JQikTmQKQ1-Qmxj2lVHEuE5Jtg9-jPbSn9jCm3qW9b44dxtSfMKRrfwztRNN9YR1MvCVXznQR7_64ILv18261yar3l9fVU5VZLiDPCumYxZqaoizQIChXozVSWcdYLq0qsZbTFeMMCF5zgbYpwZaTyU3ZFHxBHuZZG3yMAZ0eQtubMGqg-hyqz6F6Dp1smO2ftsPxP1Vvq7cPqsqc_wLUzFj7</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Forrest, Brian E.</creator><creator>Lee, Hun Hee</creator><creator>Samei, Ebrahim</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201104</creationdate><title>Projectivity of modules over Fourier algebras</title><author>Forrest, Brian E. ; Lee, Hun Hee ; Samei, Ebrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3417-85f2ceb0a898eae16fbeca56cf2275c69eb5115afa143b34ecd91c9ae13a9d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forrest, Brian E.</creatorcontrib><creatorcontrib>Lee, Hun Hee</creatorcontrib><creatorcontrib>Samei, Ebrahim</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forrest, Brian E.</au><au>Lee, Hun Hee</au><au>Samei, Ebrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projectivity of modules over Fourier algebras</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2011-04</date><risdate>2011</risdate><volume>102</volume><issue>4</issue><spage>697</spage><epage>730</epage><pages>697-730</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>In this paper we study the homological properties of various natural modules associated to the Fourier algebra of a locally compact group. In particular, we focus on the question of identifying when such modules are projective in the category of operator spaces. We will show that projectivity often implies that the underlying group is discrete and give evidence to show that amenability also plays an important role.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pdq030</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2011-04, Vol.102 (4), p.697-730
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_pdq030
source Wiley-Blackwell Read & Publish Collection
title Projectivity of modules over Fourier algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projectivity%20of%20modules%20over%20Fourier%20algebras&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Forrest,%20Brian%20E.&rft.date=2011-04&rft.volume=102&rft.issue=4&rft.spage=697&rft.epage=730&rft.pages=697-730&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pdq030&rft_dat=%3Cwiley_cross%3EPLMS0697%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3417-85f2ceb0a898eae16fbeca56cf2275c69eb5115afa143b34ecd91c9ae13a9d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true