Loading…
Non‐integrality of some Steinberg modules
We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apart...
Saved in:
Published in: | Journal of topology 2020-06, Vol.13 (2), p.441-459 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693 |
---|---|
cites | cdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693 |
container_end_page | 459 |
container_issue | 2 |
container_start_page | 441 |
container_title | Journal of topology |
container_volume | 13 |
creator | Miller, Jeremy Patzt, Peter Wilson, Jennifer C. H. Yasaki, Dan |
description | We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings. |
doi_str_mv | 10.1112/topo.12132 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_topo_12132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO12132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</originalsourceid><addsrcrecordid>eNp9j01OwzAUhC1UJNrChhNkDUrxsxM3XqKKP6kiSJS1ZTvPVVASV3YQyo4jcEZOQksQS1Yzi29G-gg5B7oAAHbV-51fAAPOjsgUljlPi4xlk78O4oTMYnylVDDKxZRcPvru6-Oz7nrcBt3U_ZB4l0TfYvLcY90ZDNuk9dVbg_GUHDvdRDz7zTl5ub3ZrO7TdXn3sLpep5ZTyVLMJXJmmK2sEa4wBV9qRBQOLXWGcqulMSBzAZhraTmjGeN7qHJOFkxIPicX468NPsaATu1C3eowKKDqoKkOmupHcw_DCL_XDQ7_kGpTPpXj5ht8ilaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non‐integrality of some Steinberg modules</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Miller, Jeremy ; Patzt, Peter ; Wilson, Jennifer C. H. ; Yasaki, Dan</creator><creatorcontrib>Miller, Jeremy ; Patzt, Peter ; Wilson, Jennifer C. H. ; Yasaki, Dan</creatorcontrib><description>We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/topo.12132</identifier><language>eng</language><subject>11F75 ; 55N25 (primary) ; 55R35 ; 55U10 (secondary)</subject><ispartof>Journal of topology, 2020-06, Vol.13 (2), p.441-459</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</citedby><cites>FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Miller, Jeremy</creatorcontrib><creatorcontrib>Patzt, Peter</creatorcontrib><creatorcontrib>Wilson, Jennifer C. H.</creatorcontrib><creatorcontrib>Yasaki, Dan</creatorcontrib><title>Non‐integrality of some Steinberg modules</title><title>Journal of topology</title><description>We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.</description><subject>11F75</subject><subject>55N25 (primary)</subject><subject>55R35</subject><subject>55U10 (secondary)</subject><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01OwzAUhC1UJNrChhNkDUrxsxM3XqKKP6kiSJS1ZTvPVVASV3YQyo4jcEZOQksQS1Yzi29G-gg5B7oAAHbV-51fAAPOjsgUljlPi4xlk78O4oTMYnylVDDKxZRcPvru6-Oz7nrcBt3U_ZB4l0TfYvLcY90ZDNuk9dVbg_GUHDvdRDz7zTl5ub3ZrO7TdXn3sLpep5ZTyVLMJXJmmK2sEa4wBV9qRBQOLXWGcqulMSBzAZhraTmjGeN7qHJOFkxIPicX468NPsaATu1C3eowKKDqoKkOmupHcw_DCL_XDQ7_kGpTPpXj5ht8ilaI</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Miller, Jeremy</creator><creator>Patzt, Peter</creator><creator>Wilson, Jennifer C. H.</creator><creator>Yasaki, Dan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202006</creationdate><title>Non‐integrality of some Steinberg modules</title><author>Miller, Jeremy ; Patzt, Peter ; Wilson, Jennifer C. H. ; Yasaki, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>11F75</topic><topic>55N25 (primary)</topic><topic>55R35</topic><topic>55U10 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jeremy</creatorcontrib><creatorcontrib>Patzt, Peter</creatorcontrib><creatorcontrib>Wilson, Jennifer C. H.</creatorcontrib><creatorcontrib>Yasaki, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jeremy</au><au>Patzt, Peter</au><au>Wilson, Jennifer C. H.</au><au>Yasaki, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐integrality of some Steinberg modules</atitle><jtitle>Journal of topology</jtitle><date>2020-06</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>441</spage><epage>459</epage><pages>441-459</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.</abstract><doi>10.1112/topo.12132</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-8416 |
ispartof | Journal of topology, 2020-06, Vol.13 (2), p.441-459 |
issn | 1753-8416 1753-8424 |
language | eng |
recordid | cdi_crossref_primary_10_1112_topo_12132 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 11F75 55N25 (primary) 55R35 55U10 (secondary) |
title | Non‐integrality of some Steinberg modules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90integrality%20of%20some%20Steinberg%20modules&rft.jtitle=Journal%20of%20topology&rft.au=Miller,%20Jeremy&rft.date=2020-06&rft.volume=13&rft.issue=2&rft.spage=441&rft.epage=459&rft.pages=441-459&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/topo.12132&rft_dat=%3Cwiley_cross%3ETOPO12132%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |