Loading…

Non‐integrality of some Steinberg modules

We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apart...

Full description

Saved in:
Bibliographic Details
Published in:Journal of topology 2020-06, Vol.13 (2), p.441-459
Main Authors: Miller, Jeremy, Patzt, Peter, Wilson, Jennifer C. H., Yasaki, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693
cites cdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693
container_end_page 459
container_issue 2
container_start_page 441
container_title Journal of topology
container_volume 13
creator Miller, Jeremy
Patzt, Peter
Wilson, Jennifer C. H.
Yasaki, Dan
description We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.
doi_str_mv 10.1112/topo.12132
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_topo_12132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO12132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</originalsourceid><addsrcrecordid>eNp9j01OwzAUhC1UJNrChhNkDUrxsxM3XqKKP6kiSJS1ZTvPVVASV3YQyo4jcEZOQksQS1Yzi29G-gg5B7oAAHbV-51fAAPOjsgUljlPi4xlk78O4oTMYnylVDDKxZRcPvru6-Oz7nrcBt3U_ZB4l0TfYvLcY90ZDNuk9dVbg_GUHDvdRDz7zTl5ub3ZrO7TdXn3sLpep5ZTyVLMJXJmmK2sEa4wBV9qRBQOLXWGcqulMSBzAZhraTmjGeN7qHJOFkxIPicX468NPsaATu1C3eowKKDqoKkOmupHcw_DCL_XDQ7_kGpTPpXj5ht8ilaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non‐integrality of some Steinberg modules</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Miller, Jeremy ; Patzt, Peter ; Wilson, Jennifer C. H. ; Yasaki, Dan</creator><creatorcontrib>Miller, Jeremy ; Patzt, Peter ; Wilson, Jennifer C. H. ; Yasaki, Dan</creatorcontrib><description>We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/topo.12132</identifier><language>eng</language><subject>11F75 ; 55N25 (primary) ; 55R35 ; 55U10 (secondary)</subject><ispartof>Journal of topology, 2020-06, Vol.13 (2), p.441-459</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</citedby><cites>FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Miller, Jeremy</creatorcontrib><creatorcontrib>Patzt, Peter</creatorcontrib><creatorcontrib>Wilson, Jennifer C. H.</creatorcontrib><creatorcontrib>Yasaki, Dan</creatorcontrib><title>Non‐integrality of some Steinberg modules</title><title>Journal of topology</title><description>We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.</description><subject>11F75</subject><subject>55N25 (primary)</subject><subject>55R35</subject><subject>55U10 (secondary)</subject><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01OwzAUhC1UJNrChhNkDUrxsxM3XqKKP6kiSJS1ZTvPVVASV3YQyo4jcEZOQksQS1Yzi29G-gg5B7oAAHbV-51fAAPOjsgUljlPi4xlk78O4oTMYnylVDDKxZRcPvru6-Oz7nrcBt3U_ZB4l0TfYvLcY90ZDNuk9dVbg_GUHDvdRDz7zTl5ub3ZrO7TdXn3sLpep5ZTyVLMJXJmmK2sEa4wBV9qRBQOLXWGcqulMSBzAZhraTmjGeN7qHJOFkxIPicX468NPsaATu1C3eowKKDqoKkOmupHcw_DCL_XDQ7_kGpTPpXj5ht8ilaI</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Miller, Jeremy</creator><creator>Patzt, Peter</creator><creator>Wilson, Jennifer C. H.</creator><creator>Yasaki, Dan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202006</creationdate><title>Non‐integrality of some Steinberg modules</title><author>Miller, Jeremy ; Patzt, Peter ; Wilson, Jennifer C. H. ; Yasaki, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>11F75</topic><topic>55N25 (primary)</topic><topic>55R35</topic><topic>55U10 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jeremy</creatorcontrib><creatorcontrib>Patzt, Peter</creatorcontrib><creatorcontrib>Wilson, Jennifer C. H.</creatorcontrib><creatorcontrib>Yasaki, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jeremy</au><au>Patzt, Peter</au><au>Wilson, Jennifer C. H.</au><au>Yasaki, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐integrality of some Steinberg modules</atitle><jtitle>Journal of topology</jtitle><date>2020-06</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>441</spage><epage>459</epage><pages>441-459</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartment classes. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is generated by integral apartment classes if and only if the ring is Euclidean. We also construct new cohomology classes in the top‐dimensional cohomology group of the special linear group of some quadratic imaginary number rings.</abstract><doi>10.1112/topo.12132</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8416
ispartof Journal of topology, 2020-06, Vol.13 (2), p.441-459
issn 1753-8416
1753-8424
language eng
recordid cdi_crossref_primary_10_1112_topo_12132
source Wiley-Blackwell Read & Publish Collection
subjects 11F75
55N25 (primary)
55R35
55U10 (secondary)
title Non‐integrality of some Steinberg modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90integrality%20of%20some%20Steinberg%20modules&rft.jtitle=Journal%20of%20topology&rft.au=Miller,%20Jeremy&rft.date=2020-06&rft.volume=13&rft.issue=2&rft.spage=441&rft.epage=459&rft.pages=441-459&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/topo.12132&rft_dat=%3Cwiley_cross%3ETOPO12132%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3092-e59e32b2cdcb6f8b837aeee6fec0fb03ca9bb19561e5a9c320423837dff982693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true