Loading…

Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis

In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Techn...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluids engineering 1997-03, Vol.119 (1), p.145-154
Main Authors: Paterson, E. G, Stern, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843
cites cdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843
container_end_page 154
container_issue 1
container_start_page 145
container_title Journal of fluids engineering
container_volume 119
creator Paterson, E. G
Stern, F
description In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.
doi_str_mv 10.1115/1.2819100
format article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_2819100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>411853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFYPnr3swYuH1J1sNtn1VotVoWIPtngyTJINpKTZsJMgvfkj_IX-EiMtngYe33u8eYxdgpgAgLqFSajBgBBHbAQq1IER8H7MRkIYHYShCE_ZGdFGCJAy0iP2MXPbtu-wq1zDXclXDXUWix1fV5S7nvgL-qqxwdK7tq_JeX5fY2H5vHaf9PP1vUTfcbjja6yrYp-CTcGnDdY7quicnZRYk7043DFbzR_eZk_B4vXxeTZdBDiU7QITJbEMpSwSK0plI4x1pmRmbJGpJAFtUJsoF8KaUMUqy-JExQVkgwgJSB3JMbvZ5-beEXlbpq2vtuh3KYj0b5gU0sMwA3u9Z1ukHOvSY5NX9G8IY6GNUgN2tceQtjbduN4PP1EaAWgl5S9SXmrx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</title><source>ASME Digital Collection Journals Archive</source><creator>Paterson, E. G ; Stern, F</creator><creatorcontrib>Paterson, E. G ; Stern, F</creatorcontrib><description>In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.2819100</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied fluid mechanics ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics, hydraulics, hydrostatics ; Physics</subject><ispartof>Journal of fluids engineering, 1997-03, Vol.119 (1), p.145-154</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</citedby><cites>FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38518</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2608955$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paterson, E. G</creatorcontrib><creatorcontrib>Stern, F</creatorcontrib><title>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.</description><subject>Applied fluid mechanics</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Physics</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFYPnr3swYuH1J1sNtn1VotVoWIPtngyTJINpKTZsJMgvfkj_IX-EiMtngYe33u8eYxdgpgAgLqFSajBgBBHbAQq1IER8H7MRkIYHYShCE_ZGdFGCJAy0iP2MXPbtu-wq1zDXclXDXUWix1fV5S7nvgL-qqxwdK7tq_JeX5fY2H5vHaf9PP1vUTfcbjja6yrYp-CTcGnDdY7quicnZRYk7043DFbzR_eZk_B4vXxeTZdBDiU7QITJbEMpSwSK0plI4x1pmRmbJGpJAFtUJsoF8KaUMUqy-JExQVkgwgJSB3JMbvZ5-beEXlbpq2vtuh3KYj0b5gU0sMwA3u9Z1ukHOvSY5NX9G8IY6GNUgN2tceQtjbduN4PP1EaAWgl5S9SXmrx</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Paterson, E. G</creator><creator>Stern, F</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</title><author>Paterson, E. G ; Stern, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied fluid mechanics</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paterson, E. G</creatorcontrib><creatorcontrib>Stern, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paterson, E. G</au><au>Stern, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>1997-03-01</date><risdate>1997</risdate><volume>119</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2819100</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 1997-03, Vol.119 (1), p.145-154
issn 0098-2202
1528-901X
language eng
recordid cdi_crossref_primary_10_1115_1_2819100
source ASME Digital Collection Journals Archive
subjects Applied fluid mechanics
Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamics, hydraulics, hydrostatics
Physics
title Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20Unsteady%20Viscous%20Marine-Propulsor%20Blade%20Flows%E2%80%94Part%201:%20Validation%20and%20Analysis&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Paterson,%20E.%20G&rft.date=1997-03-01&rft.volume=119&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.2819100&rft_dat=%3Casme_cross%3E411853%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true