Loading…
Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis
In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Techn...
Saved in:
Published in: | Journal of fluids engineering 1997-03, Vol.119 (1), p.145-154 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843 |
---|---|
cites | cdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843 |
container_end_page | 154 |
container_issue | 1 |
container_start_page | 145 |
container_title | Journal of fluids engineering |
container_volume | 119 |
creator | Paterson, E. G Stern, F |
description | In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform. |
doi_str_mv | 10.1115/1.2819100 |
format | article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_2819100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>411853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFYPnr3swYuH1J1sNtn1VotVoWIPtngyTJINpKTZsJMgvfkj_IX-EiMtngYe33u8eYxdgpgAgLqFSajBgBBHbAQq1IER8H7MRkIYHYShCE_ZGdFGCJAy0iP2MXPbtu-wq1zDXclXDXUWix1fV5S7nvgL-qqxwdK7tq_JeX5fY2H5vHaf9PP1vUTfcbjja6yrYp-CTcGnDdY7quicnZRYk7043DFbzR_eZk_B4vXxeTZdBDiU7QITJbEMpSwSK0plI4x1pmRmbJGpJAFtUJsoF8KaUMUqy-JExQVkgwgJSB3JMbvZ5-beEXlbpq2vtuh3KYj0b5gU0sMwA3u9Z1ukHOvSY5NX9G8IY6GNUgN2tceQtjbduN4PP1EaAWgl5S9SXmrx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</title><source>ASME Digital Collection Journals Archive</source><creator>Paterson, E. G ; Stern, F</creator><creatorcontrib>Paterson, E. G ; Stern, F</creatorcontrib><description>In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.2819100</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied fluid mechanics ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics, hydraulics, hydrostatics ; Physics</subject><ispartof>Journal of fluids engineering, 1997-03, Vol.119 (1), p.145-154</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</citedby><cites>FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38518</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2608955$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paterson, E. G</creatorcontrib><creatorcontrib>Stern, F</creatorcontrib><title>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.</description><subject>Applied fluid mechanics</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Physics</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFYPnr3swYuH1J1sNtn1VotVoWIPtngyTJINpKTZsJMgvfkj_IX-EiMtngYe33u8eYxdgpgAgLqFSajBgBBHbAQq1IER8H7MRkIYHYShCE_ZGdFGCJAy0iP2MXPbtu-wq1zDXclXDXUWix1fV5S7nvgL-qqxwdK7tq_JeX5fY2H5vHaf9PP1vUTfcbjja6yrYp-CTcGnDdY7quicnZRYk7043DFbzR_eZk_B4vXxeTZdBDiU7QITJbEMpSwSK0plI4x1pmRmbJGpJAFtUJsoF8KaUMUqy-JExQVkgwgJSB3JMbvZ5-beEXlbpq2vtuh3KYj0b5gU0sMwA3u9Z1ukHOvSY5NX9G8IY6GNUgN2tceQtjbduN4PP1EaAWgl5S9SXmrx</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Paterson, E. G</creator><creator>Stern, F</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</title><author>Paterson, E. G ; Stern, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied fluid mechanics</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paterson, E. G</creatorcontrib><creatorcontrib>Stern, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paterson, E. G</au><au>Stern, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>1997-03-01</date><risdate>1997</risdate><volume>119</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>In this two-part paper, time-accurate solutions of the Reynolds-averaged Navier-Stokes equations are presented, which address through model problems, the response of turbulent propeller-blade boundary layers, and wakes to external-flow traveling waves. In Part 1, the Massachusetts Institute of Technology flapping-foil experiment is simulated and the results validated through comparisons with data. The physics of unsteady blade flows are shown to be complex with analogy to Stokes layers and are explicated through visualization and Fourier analysis. It is shown that convection induced steady/unsteady interaction causes deformation of the external-flow waves and is responsible for the upstream- and downstream-traveling pressure-gradient waves over the foil and in the wake, respectively. The nature of the unsteady displacement thickness suggests viscous-inviscid interaction as the mechanism for the response. In Part 2, a parametric study is undertaken to quantify the effects of frequency, foil geometry, and waveform.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2819100</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-2202 |
ispartof | Journal of fluids engineering, 1997-03, Vol.119 (1), p.145-154 |
issn | 0098-2202 1528-901X |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_2819100 |
source | ASME Digital Collection Journals Archive |
subjects | Applied fluid mechanics Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamics, hydraulics, hydrostatics Physics |
title | Computation of Unsteady Viscous Marine-Propulsor Blade Flows—Part 1: Validation and Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20Unsteady%20Viscous%20Marine-Propulsor%20Blade%20Flows%E2%80%94Part%201:%20Validation%20and%20Analysis&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Paterson,%20E.%20G&rft.date=1997-03-01&rft.volume=119&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.2819100&rft_dat=%3Casme_cross%3E411853%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a191t-94763233d7e0f5e4a68b53b9edb577189a894c00e92565bb6756d1b8941713843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |