Loading…

Thermal Elastohydrodynamic Model of a Radial Lip Seal—Part I: Analysis and Base Results

A numerical thermal elastohydrodynamic model of a radial lip seal, with a flooded air side, has been constructed. The shaft surface is modeled as perfectly smooth, while the lip microgeometry is modeled as a uniform distribution of asperities with initially circular cross-sections. The asperities ca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of tribology 1999-01, Vol.121 (1), p.1-10
Main Authors: Day, Kevin, Salant, Richard F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3
cites cdi_FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3
container_end_page 10
container_issue 1
container_start_page 1
container_title Journal of tribology
container_volume 121
creator Day, Kevin
Salant, Richard F
description A numerical thermal elastohydrodynamic model of a radial lip seal, with a flooded air side, has been constructed. The shaft surface is modeled as perfectly smooth, while the lip microgeometry is modeled as a uniform distribution of asperities with initially circular cross-sections. The asperities can deform circumferentially as the bulk lip material shears. Both the viscosity of the fluid and the elastic modulus of the lip are temperature dependent. Model predictions include the pressure distribution in the lubricating film under the lip, the film thickness distribution, the cavitation distribution, the pumping rate, and the lip temperature distribution.
doi_str_mv 10.1115/1.2833803
format article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_2833803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>437705</sourcerecordid><originalsourceid>FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3</originalsourceid><addsrcrecordid>eNpF0L1OwzAUBWALgUQpDMwsHlgYUnxzk9hhK1X5kYpApQxM0a1jq6mcprLTIRsPwRPyJAS1EtNZvnukexi7BDECgPQWRrFCVAKP2ADSWEVK5fKYDYRM4iiRSp6ysxDWQgBiigP2uVgZX5PjU0ehbVZd6Zuy21Bdaf7SlMbxxnLicyqrHs2qLX835H6-vt_It_z5jo835LpQBU6bkt9TMHxuws614ZydWHLBXBxyyD4epovJUzR7fXyejGcRxUK1EWQkAJY6yVFppbNExAlalZJUAnKN2tolCsoyq8GmVsaYqdhQLvqQkGocspt9r_ZNCN7YYuurmnxXgCj-NimgOGzS2-u93VLQ5Kynja7C_0EmswShZ1d7RqE2xbrZ-f7JUCQopUjxFxupaI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Elastohydrodynamic Model of a Radial Lip Seal—Part I: Analysis and Base Results</title><source>ASME Transactions Journals (Archives)</source><creator>Day, Kevin ; Salant, Richard F</creator><creatorcontrib>Day, Kevin ; Salant, Richard F</creatorcontrib><description>A numerical thermal elastohydrodynamic model of a radial lip seal, with a flooded air side, has been constructed. The shaft surface is modeled as perfectly smooth, while the lip microgeometry is modeled as a uniform distribution of asperities with initially circular cross-sections. The asperities can deform circumferentially as the bulk lip material shears. Both the viscosity of the fluid and the elastic modulus of the lip are temperature dependent. Model predictions include the pressure distribution in the lubricating film under the lip, the film thickness distribution, the cavitation distribution, the pumping rate, and the lip temperature distribution.</description><identifier>ISSN: 0742-4787</identifier><identifier>EISSN: 1528-8897</identifier><identifier>DOI: 10.1115/1.2833803</identifier><identifier>CODEN: JOTRE9</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Exact sciences and technology ; Machine components ; Mechanical engineering. Machine design ; Seals and gaskets</subject><ispartof>Journal of tribology, 1999-01, Vol.121 (1), p.1-10</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3</citedby><cites>FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,4036,4037,23909,23910,25118,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1676431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Day, Kevin</creatorcontrib><creatorcontrib>Salant, Richard F</creatorcontrib><title>Thermal Elastohydrodynamic Model of a Radial Lip Seal—Part I: Analysis and Base Results</title><title>Journal of tribology</title><addtitle>J. Tribol</addtitle><description>A numerical thermal elastohydrodynamic model of a radial lip seal, with a flooded air side, has been constructed. The shaft surface is modeled as perfectly smooth, while the lip microgeometry is modeled as a uniform distribution of asperities with initially circular cross-sections. The asperities can deform circumferentially as the bulk lip material shears. Both the viscosity of the fluid and the elastic modulus of the lip are temperature dependent. Model predictions include the pressure distribution in the lubricating film under the lip, the film thickness distribution, the cavitation distribution, the pumping rate, and the lip temperature distribution.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Machine components</subject><subject>Mechanical engineering. Machine design</subject><subject>Seals and gaskets</subject><issn>0742-4787</issn><issn>1528-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpF0L1OwzAUBWALgUQpDMwsHlgYUnxzk9hhK1X5kYpApQxM0a1jq6mcprLTIRsPwRPyJAS1EtNZvnukexi7BDECgPQWRrFCVAKP2ADSWEVK5fKYDYRM4iiRSp6ysxDWQgBiigP2uVgZX5PjU0ehbVZd6Zuy21Bdaf7SlMbxxnLicyqrHs2qLX835H6-vt_It_z5jo835LpQBU6bkt9TMHxuws614ZydWHLBXBxyyD4epovJUzR7fXyejGcRxUK1EWQkAJY6yVFppbNExAlalZJUAnKN2tolCsoyq8GmVsaYqdhQLvqQkGocspt9r_ZNCN7YYuurmnxXgCj-NimgOGzS2-u93VLQ5Kynja7C_0EmswShZ1d7RqE2xbrZ-f7JUCQopUjxFxupaI8</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Day, Kevin</creator><creator>Salant, Richard F</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>Thermal Elastohydrodynamic Model of a Radial Lip Seal—Part I: Analysis and Base Results</title><author>Day, Kevin ; Salant, Richard F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Machine components</topic><topic>Mechanical engineering. Machine design</topic><topic>Seals and gaskets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Day, Kevin</creatorcontrib><creatorcontrib>Salant, Richard F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of tribology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Day, Kevin</au><au>Salant, Richard F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Elastohydrodynamic Model of a Radial Lip Seal—Part I: Analysis and Base Results</atitle><jtitle>Journal of tribology</jtitle><stitle>J. Tribol</stitle><date>1999-01-01</date><risdate>1999</risdate><volume>121</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0742-4787</issn><eissn>1528-8897</eissn><coden>JOTRE9</coden><abstract>A numerical thermal elastohydrodynamic model of a radial lip seal, with a flooded air side, has been constructed. The shaft surface is modeled as perfectly smooth, while the lip microgeometry is modeled as a uniform distribution of asperities with initially circular cross-sections. The asperities can deform circumferentially as the bulk lip material shears. Both the viscosity of the fluid and the elastic modulus of the lip are temperature dependent. Model predictions include the pressure distribution in the lubricating film under the lip, the film thickness distribution, the cavitation distribution, the pumping rate, and the lip temperature distribution.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2833803</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0742-4787
ispartof Journal of tribology, 1999-01, Vol.121 (1), p.1-10
issn 0742-4787
1528-8897
language eng
recordid cdi_crossref_primary_10_1115_1_2833803
source ASME Transactions Journals (Archives)
subjects Applied sciences
Exact sciences and technology
Machine components
Mechanical engineering. Machine design
Seals and gaskets
title Thermal Elastohydrodynamic Model of a Radial Lip Seal—Part I: Analysis and Base Results
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Elastohydrodynamic%20Model%20of%20a%20Radial%20Lip%20Seal%E2%80%94Part%20I:%20Analysis%20and%20Base%20Results&rft.jtitle=Journal%20of%20tribology&rft.au=Day,%20Kevin&rft.date=1999-01-01&rft.volume=121&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0742-4787&rft.eissn=1528-8897&rft.coden=JOTRE9&rft_id=info:doi/10.1115/1.2833803&rft_dat=%3Casme_cross%3E437705%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a208t-16a011bc4938c8c640243f85a78019c3cffb30a66fc1f5f723682ea90682715c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true