Loading…
The End Problem of Incompressible Elastic Cylinders
The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A t...
Saved in:
Published in: | Journal of applied mechanics 1994-03, Vol.61 (1), p.30-37 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3 |
---|---|
cites | |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 30 |
container_title | Journal of applied mechanics |
container_volume | 61 |
creator | Ling, Yun Engel, P. A Geer, J. A |
description | The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed. |
doi_str_mv | 10.1115/1.2901417 |
format | article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_2901417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>423923</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3</originalsourceid><addsrcrecordid>eNo9jztPwzAUhS0EEqEwMLNkYGFIudeOXyOKClSqBEOZLcd2RKq8ZJeh_56gVExXOvrO0f0IuUdYIyJ_xjXVgCXKC5Ihp6rQwMQlyQAoFkozcU1uUjoAAFeizAjbf4d8M_j8M451F_p8bPLt4MZ-iiGldo7yTWfTsXV5derawYeYbslVY7sU7s53Rb5eN_vqvdh9vG2rl11hqVTHIijggjJmHaelFKKRgXoQjmlXCvBWeuZFqMHXXKFmCIL72oUmSAmeWs9W5GnZdXFMKYbGTLHtbTwZBPNna9CcbWf2cWEnm5ztmmgH16b_QgkolFYz9rBgNvXBHMafOMwGpqRMz5_-AvNeW0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The End Problem of Incompressible Elastic Cylinders</title><source>ASME Transactions Journals (Archives)</source><creator>Ling, Yun ; Engel, P. A ; Geer, J. A</creator><creatorcontrib>Ling, Yun ; Engel, P. A ; Geer, J. A</creatorcontrib><description>The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.2901417</identifier><identifier>CODEN: JAMCAV</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Journal of applied mechanics, 1994-03, Vol.61 (1), p.30-37</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4016898$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Yun</creatorcontrib><creatorcontrib>Engel, P. A</creatorcontrib><creatorcontrib>Geer, J. A</creatorcontrib><title>The End Problem of Incompressible Elastic Cylinders</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9jztPwzAUhS0EEqEwMLNkYGFIudeOXyOKClSqBEOZLcd2RKq8ZJeh_56gVExXOvrO0f0IuUdYIyJ_xjXVgCXKC5Ihp6rQwMQlyQAoFkozcU1uUjoAAFeizAjbf4d8M_j8M451F_p8bPLt4MZ-iiGldo7yTWfTsXV5derawYeYbslVY7sU7s53Rb5eN_vqvdh9vG2rl11hqVTHIijggjJmHaelFKKRgXoQjmlXCvBWeuZFqMHXXKFmCIL72oUmSAmeWs9W5GnZdXFMKYbGTLHtbTwZBPNna9CcbWf2cWEnm5ztmmgH16b_QgkolFYz9rBgNvXBHMafOMwGpqRMz5_-AvNeW0g</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Ling, Yun</creator><creator>Engel, P. A</creator><creator>Geer, J. A</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>The End Problem of Incompressible Elastic Cylinders</title><author>Ling, Yun ; Engel, P. A ; Geer, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Yun</creatorcontrib><creatorcontrib>Engel, P. A</creatorcontrib><creatorcontrib>Geer, J. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Yun</au><au>Engel, P. A</au><au>Geer, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The End Problem of Incompressible Elastic Cylinders</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>1994-03-01</date><risdate>1994</risdate><volume>61</volume><issue>1</issue><spage>30</spage><epage>37</epage><pages>30-37</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><coden>JAMCAV</coden><abstract>The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2901417</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8936 |
ispartof | Journal of applied mechanics, 1994-03, Vol.61 (1), p.30-37 |
issn | 0021-8936 1528-9036 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_2901417 |
source | ASME Transactions Journals (Archives) |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | The End Problem of Incompressible Elastic Cylinders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20End%20Problem%20of%20Incompressible%20Elastic%20Cylinders&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Ling,%20Yun&rft.date=1994-03-01&rft.volume=61&rft.issue=1&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.issn=0021-8936&rft.eissn=1528-9036&rft.coden=JAMCAV&rft_id=info:doi/10.1115/1.2901417&rft_dat=%3Casme_cross%3E423923%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |