Loading…

The End Problem of Incompressible Elastic Cylinders

The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mechanics 1994-03, Vol.61 (1), p.30-37
Main Authors: Ling, Yun, Engel, P. A, Geer, J. A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3
cites
container_end_page 37
container_issue 1
container_start_page 30
container_title Journal of applied mechanics
container_volume 61
creator Ling, Yun
Engel, P. A
Geer, J. A
description The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.
doi_str_mv 10.1115/1.2901417
format article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_2901417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>423923</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3</originalsourceid><addsrcrecordid>eNo9jztPwzAUhS0EEqEwMLNkYGFIudeOXyOKClSqBEOZLcd2RKq8ZJeh_56gVExXOvrO0f0IuUdYIyJ_xjXVgCXKC5Ihp6rQwMQlyQAoFkozcU1uUjoAAFeizAjbf4d8M_j8M451F_p8bPLt4MZ-iiGldo7yTWfTsXV5derawYeYbslVY7sU7s53Rb5eN_vqvdh9vG2rl11hqVTHIijggjJmHaelFKKRgXoQjmlXCvBWeuZFqMHXXKFmCIL72oUmSAmeWs9W5GnZdXFMKYbGTLHtbTwZBPNna9CcbWf2cWEnm5ztmmgH16b_QgkolFYz9rBgNvXBHMafOMwGpqRMz5_-AvNeW0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The End Problem of Incompressible Elastic Cylinders</title><source>ASME Transactions Journals (Archives)</source><creator>Ling, Yun ; Engel, P. A ; Geer, J. A</creator><creatorcontrib>Ling, Yun ; Engel, P. A ; Geer, J. A</creatorcontrib><description>The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.2901417</identifier><identifier>CODEN: JAMCAV</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Journal of applied mechanics, 1994-03, Vol.61 (1), p.30-37</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4016898$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Yun</creatorcontrib><creatorcontrib>Engel, P. A</creatorcontrib><creatorcontrib>Geer, J. A</creatorcontrib><title>The End Problem of Incompressible Elastic Cylinders</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9jztPwzAUhS0EEqEwMLNkYGFIudeOXyOKClSqBEOZLcd2RKq8ZJeh_56gVExXOvrO0f0IuUdYIyJ_xjXVgCXKC5Ihp6rQwMQlyQAoFkozcU1uUjoAAFeizAjbf4d8M_j8M451F_p8bPLt4MZ-iiGldo7yTWfTsXV5derawYeYbslVY7sU7s53Rb5eN_vqvdh9vG2rl11hqVTHIijggjJmHaelFKKRgXoQjmlXCvBWeuZFqMHXXKFmCIL72oUmSAmeWs9W5GnZdXFMKYbGTLHtbTwZBPNna9CcbWf2cWEnm5ztmmgH16b_QgkolFYz9rBgNvXBHMafOMwGpqRMz5_-AvNeW0g</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Ling, Yun</creator><creator>Engel, P. A</creator><creator>Geer, J. A</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940301</creationdate><title>The End Problem of Incompressible Elastic Cylinders</title><author>Ling, Yun ; Engel, P. A ; Geer, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Yun</creatorcontrib><creatorcontrib>Engel, P. A</creatorcontrib><creatorcontrib>Geer, J. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Yun</au><au>Engel, P. A</au><au>Geer, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The End Problem of Incompressible Elastic Cylinders</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>1994-03-01</date><risdate>1994</risdate><volume>61</volume><issue>1</issue><spage>30</spage><epage>37</epage><pages>30-37</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><coden>JAMCAV</coden><abstract>The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2901417</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8936
ispartof Journal of applied mechanics, 1994-03, Vol.61 (1), p.30-37
issn 0021-8936
1528-9036
language eng
recordid cdi_crossref_primary_10_1115_1_2901417
source ASME Transactions Journals (Archives)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title The End Problem of Incompressible Elastic Cylinders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20End%20Problem%20of%20Incompressible%20Elastic%20Cylinders&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Ling,%20Yun&rft.date=1994-03-01&rft.volume=61&rft.issue=1&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.issn=0021-8936&rft.eissn=1528-9036&rft.coden=JAMCAV&rft_id=info:doi/10.1115/1.2901417&rft_dat=%3Casme_cross%3E423923%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a278t-e8056233ac524766f7e2d06c39c460da7d3d6eb0db581931065dbcefe770d2ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true