Loading…
The Mass Transfer Analogy to Heat Transfer in Fluids With Temperature-Dependent Properties
The analogy between heat transfer in a single-component fluid and isothermal mass transfer of a two-component fluid without chemical reaction is presented. The analogy is well established and frequently used for fluids with constant properties. However, in various applications such as in the cooling...
Saved in:
Published in: | Journal of turbomachinery 1991-01, Vol.113 (1), p.27-33 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The analogy between heat transfer in a single-component fluid and isothermal mass transfer of a two-component fluid without chemical reaction is presented. The analogy is well established and frequently used for fluids with constant properties. However, in various applications such as in the cooling of hot components in gas turbines, the temperature varies widely, causing significant fluid property variations. The present paper reviews the constant-property situation and considers in detail the conditions necessary to ensure similarity of the two transport processes with temperature and concentration-dependent fluid properties. An application of the variable property analogy to mass transfer in binary mixtures is presented along with specific recommendations for the CO2–air and Freon-air systems. It is demonstrated that the essential similarity conditions of the analogy are very well fulfilled for film cooling, total coverage film cooling, and impingement cooling when the heat (mass) flux into the wall in the transport process is zero. The heat/mass transfer analogy can, therefore, be used with confidence for these processes. |
---|---|
ISSN: | 0889-504X 1528-8900 |
DOI: | 10.1115/1.2927734 |