Loading…
Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances
Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however,...
Saved in:
Published in: | Journal of dynamic systems, measurement, and control measurement, and control, 1986-09, Vol.108 (3), p.223-232 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93 |
---|---|
cites | |
container_end_page | 232 |
container_issue | 3 |
container_start_page | 223 |
container_title | Journal of dynamic systems, measurement, and control |
container_volume | 108 |
creator | Whitney, D. E Rourke, J. M |
description | Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented. |
doi_str_mv | 10.1115/1.3143771 |
format | article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_3143771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>425813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93</originalsourceid><addsrcrecordid>eNo9kLtPwzAQxi0EEqUwMLN4YGFI8dlO6owQykMqAvFYWKKze6Gp8ih2isR_j1ErppPufnf3fR9jpyAmAJBewkSBVtMp7LERpNIkuZBmn42EkDIRWulDdhTCSghQKs1G7OOR3BK72mHDr2mJ33XvOXYLfkOh_uz47GuDQ913gVdxMGswDH1Lnr8uCT1_xgV_obYfiBfUDbFf9O26qbFzFI7ZQYVNoJNdHbP329lbcZ_Mn-4eiqt5gkrLIYE0M2B1lkucIlVOgM51Rg6srSCDVDiISsmpnGxuUiuEQAPSEgpc2CpXY3axvet8H4Knqlz7ukX_U4Io_0IpodyFEtnzLbvGEC1XPiqtw_-CiQ-N1BE722IYWipX_cZ30UGpZWpibr-AsGlh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</title><source>ASME journals archive 1980-1999</source><creator>Whitney, D. E ; Rourke, J. M</creator><creatorcontrib>Whitney, D. E ; Rourke, J. M</creatorcontrib><description>Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.3143771</identifier><identifier>CODEN: JDSMAA</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Exact sciences and technology ; Material handling, hoisting. Storage. Packaging ; Transfert equipment, manipulators; industrial robots</subject><ispartof>Journal of dynamic systems, measurement, and control, 1986-09, Vol.108 (3), p.223-232</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916,38510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8161824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitney, D. E</creatorcontrib><creatorcontrib>Rourke, J. M</creatorcontrib><title>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Material handling, hoisting. Storage. Packaging</subject><subject>Transfert equipment, manipulators; industrial robots</subject><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQxi0EEqUwMLN4YGFI8dlO6owQykMqAvFYWKKze6Gp8ih2isR_j1ErppPufnf3fR9jpyAmAJBewkSBVtMp7LERpNIkuZBmn42EkDIRWulDdhTCSghQKs1G7OOR3BK72mHDr2mJ33XvOXYLfkOh_uz47GuDQ913gVdxMGswDH1Lnr8uCT1_xgV_obYfiBfUDbFf9O26qbFzFI7ZQYVNoJNdHbP329lbcZ_Mn-4eiqt5gkrLIYE0M2B1lkucIlVOgM51Rg6srSCDVDiISsmpnGxuUiuEQAPSEgpc2CpXY3axvet8H4Knqlz7ukX_U4Io_0IpodyFEtnzLbvGEC1XPiqtw_-CiQ-N1BE722IYWipX_cZ30UGpZWpibr-AsGlh</recordid><startdate>19860901</startdate><enddate>19860901</enddate><creator>Whitney, D. E</creator><creator>Rourke, J. M</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860901</creationdate><title>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</title><author>Whitney, D. E ; Rourke, J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Material handling, hoisting. Storage. Packaging</topic><topic>Transfert equipment, manipulators; industrial robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitney, D. E</creatorcontrib><creatorcontrib>Rourke, J. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitney, D. E</au><au>Rourke, J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>1986-09-01</date><risdate>1986</risdate><volume>108</volume><issue>3</issue><spage>223</spage><epage>232</epage><pages>223-232</pages><issn>0022-0434</issn><eissn>1528-9028</eissn><coden>JDSMAA</coden><abstract>Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.3143771</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0434 |
ispartof | Journal of dynamic systems, measurement, and control, 1986-09, Vol.108 (3), p.223-232 |
issn | 0022-0434 1528-9028 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_3143771 |
source | ASME journals archive 1980-1999 |
subjects | Applied sciences Exact sciences and technology Material handling, hoisting. Storage. Packaging Transfert equipment, manipulators industrial robots |
title | Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Behavior%20and%20Design%20Equations%20for%20Elastomer%20Shear%20Pad%20Remote%20Center%20Compliances&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Whitney,%20D.%20E&rft.date=1986-09-01&rft.volume=108&rft.issue=3&rft.spage=223&rft.epage=232&rft.pages=223-232&rft.issn=0022-0434&rft.eissn=1528-9028&rft.coden=JDSMAA&rft_id=info:doi/10.1115/1.3143771&rft_dat=%3Casme_cross%3E425813%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |