Loading…

Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances

Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamic systems, measurement, and control measurement, and control, 1986-09, Vol.108 (3), p.223-232
Main Authors: Whitney, D. E, Rourke, J. M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93
cites
container_end_page 232
container_issue 3
container_start_page 223
container_title Journal of dynamic systems, measurement, and control
container_volume 108
creator Whitney, D. E
Rourke, J. M
description Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.
doi_str_mv 10.1115/1.3143771
format article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_3143771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>425813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93</originalsourceid><addsrcrecordid>eNo9kLtPwzAQxi0EEqUwMLN4YGFI8dlO6owQykMqAvFYWKKze6Gp8ih2isR_j1ErppPufnf3fR9jpyAmAJBewkSBVtMp7LERpNIkuZBmn42EkDIRWulDdhTCSghQKs1G7OOR3BK72mHDr2mJ33XvOXYLfkOh_uz47GuDQ913gVdxMGswDH1Lnr8uCT1_xgV_obYfiBfUDbFf9O26qbFzFI7ZQYVNoJNdHbP329lbcZ_Mn-4eiqt5gkrLIYE0M2B1lkucIlVOgM51Rg6srSCDVDiISsmpnGxuUiuEQAPSEgpc2CpXY3axvet8H4Knqlz7ukX_U4Io_0IpodyFEtnzLbvGEC1XPiqtw_-CiQ-N1BE722IYWipX_cZ30UGpZWpibr-AsGlh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</title><source>ASME journals archive 1980-1999</source><creator>Whitney, D. E ; Rourke, J. M</creator><creatorcontrib>Whitney, D. E ; Rourke, J. M</creatorcontrib><description>Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.3143771</identifier><identifier>CODEN: JDSMAA</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Exact sciences and technology ; Material handling, hoisting. Storage. Packaging ; Transfert equipment, manipulators; industrial robots</subject><ispartof>Journal of dynamic systems, measurement, and control, 1986-09, Vol.108 (3), p.223-232</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916,38510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8161824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitney, D. E</creatorcontrib><creatorcontrib>Rourke, J. M</creatorcontrib><title>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Material handling, hoisting. Storage. Packaging</subject><subject>Transfert equipment, manipulators; industrial robots</subject><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAQxi0EEqUwMLN4YGFI8dlO6owQykMqAvFYWKKze6Gp8ih2isR_j1ErppPufnf3fR9jpyAmAJBewkSBVtMp7LERpNIkuZBmn42EkDIRWulDdhTCSghQKs1G7OOR3BK72mHDr2mJ33XvOXYLfkOh_uz47GuDQ913gVdxMGswDH1Lnr8uCT1_xgV_obYfiBfUDbFf9O26qbFzFI7ZQYVNoJNdHbP329lbcZ_Mn-4eiqt5gkrLIYE0M2B1lkucIlVOgM51Rg6srSCDVDiISsmpnGxuUiuEQAPSEgpc2CpXY3axvet8H4Knqlz7ukX_U4Io_0IpodyFEtnzLbvGEC1XPiqtw_-CiQ-N1BE722IYWipX_cZ30UGpZWpibr-AsGlh</recordid><startdate>19860901</startdate><enddate>19860901</enddate><creator>Whitney, D. E</creator><creator>Rourke, J. M</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860901</creationdate><title>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</title><author>Whitney, D. E ; Rourke, J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Material handling, hoisting. Storage. Packaging</topic><topic>Transfert equipment, manipulators; industrial robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitney, D. E</creatorcontrib><creatorcontrib>Rourke, J. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitney, D. E</au><au>Rourke, J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>1986-09-01</date><risdate>1986</risdate><volume>108</volume><issue>3</issue><spage>223</spage><epage>232</epage><pages>223-232</pages><issn>0022-0434</issn><eissn>1528-9028</eissn><coden>JDSMAA</coden><abstract>Commercially available Remote Center Compliances (RCC’s) are made with elastic elements called elastomer shear pads. If these pads are assumed to be linear two-component springs, it is easy to derive equations for the RCC’s composite elastic behavior. These equations can be quite incorrect, however, because the pads are in fact nonlinear six component springs. RCC performance equations incorporating models of real pad behavior are presented here, together with experimental verification. These show that real RCC’s have less stiffness and less compliance center projection than predicted by the linear models. A new design that overcomes these problems is also presented.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.3143771</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0434
ispartof Journal of dynamic systems, measurement, and control, 1986-09, Vol.108 (3), p.223-232
issn 0022-0434
1528-9028
language eng
recordid cdi_crossref_primary_10_1115_1_3143771
source ASME journals archive 1980-1999
subjects Applied sciences
Exact sciences and technology
Material handling, hoisting. Storage. Packaging
Transfert equipment, manipulators
industrial robots
title Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Behavior%20and%20Design%20Equations%20for%20Elastomer%20Shear%20Pad%20Remote%20Center%20Compliances&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Whitney,%20D.%20E&rft.date=1986-09-01&rft.volume=108&rft.issue=3&rft.spage=223&rft.epage=232&rft.pages=223-232&rft.issn=0022-0434&rft.eissn=1528-9028&rft.coden=JDSMAA&rft_id=info:doi/10.1115/1.3143771&rft_dat=%3Casme_cross%3E425813%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-15681b4692a7aefc014946ec1bbf16150c1356ec39eb985b000a812bea0adbf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true