Loading…
Through-Flow Modeling of Axial Turbomachinery
Through-flow analysis, which is at the heart of the aerodynamic design of turbomachinery, requires as aerodynamic input a row-by-row description of the airfoil loss, deviation, and blockage. Loss and deviation have been investigated extensively in both cascades and rotating rigs as well as in numero...
Saved in:
Published in: | Journal of engineering for gas turbines and power 1986-04, Vol.108 (2), p.246-253 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Through-flow analysis, which is at the heart of the aerodynamic design of turbomachinery, requires as aerodynamic input a row-by-row description of the airfoil loss, deviation, and blockage. Loss and deviation have been investigated extensively in both cascades and rotating rigs as well as in numerous two- and three-dimensional analytical studies. Blockage, however, has received far less attention. As defined herein, blockage is a measure of the departure of the flow field from the condition of axisymmetry which is assumed in the through-flow analysis. The full-span blockage distributions calculated from measured single-stage rotor wake data were used to provide the input to the through-flow analysis, along with the measured full-span distributions of loss and deviation. Measured and computed results are compared for the single-stage rotor operating with both thick and thin inlet hub and tip boundary layers. It is demonstrated that both the level and the spanwise and streamwise distributions of blockage have a strong impact on the computed rotor exit flow field. |
---|---|
ISSN: | 0742-4795 1528-8919 |
DOI: | 10.1115/1.3239895 |