Loading…

Heat and Mass Transfer From Freely Falling Drops

When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of heat transfer 1976-02, Vol.98 (1), p.120-126
Main Authors: Yao, Shi-Chune, Schrock, V. E
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-25ad6159fdbf02248d8fc4b0c6b141d604d401d4c521948ab54823d703e77bd93
cites
container_end_page 126
container_issue 1
container_start_page 120
container_title Journal of heat transfer
container_volume 98
creator Yao, Shi-Chune
Schrock, V. E
description When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of the drop shape, and the development of internal circulation within the drop. This problem, which is of importance in evaporative cooling systems, has been studied experimentally for water drops 3–6 mm in diameter falling through air. Study of a simplified set of governing equations indicates that similitude does not exist in this problem. However, it has been found that for this size range an approximate procedure based on the assumption of negligible internal thermal resistance and an empirical transient correction factor applied to the Ranz-Marshall [1] correlation could describe the data very well.
doi_str_mv 10.1115/1.3450453
format article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_3450453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>430762</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-25ad6159fdbf02248d8fc4b0c6b141d604d401d4c521948ab54823d703e77bd93</originalsourceid><addsrcrecordid>eNotjztPwzAUhS0EEqEwMLN4ZUi5175OnBEV0iK16lJmy4lt1CqPyi5D_z1B7XLO8uk8GHtGmCOiesO5JAWk5A3LUAmd64rkLcsAhMiRNN6zh5QOACglVRmDlbcnbgfHNzYlvot2SMFHXsexn8T77sxr23X74Yd_xPGYHtldsF3yT1efse_6c7dY5evt8mvxvs6tJHHKhbKuQFUF14SpmrTToaUG2qJBQlcAOQJ01CqBFWnbKNJCuhKkL8vGVXLGXi-5bRxTij6YY9z3Np4Ngvm_atBcr07sy4W1qffmMP7GYZpmSEJZCPkHOPdMcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat and Mass Transfer From Freely Falling Drops</title><source>ASME_美国机械工程师学会过刊</source><creator>Yao, Shi-Chune ; Schrock, V. E</creator><creatorcontrib>Yao, Shi-Chune ; Schrock, V. E</creatorcontrib><description>When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of the drop shape, and the development of internal circulation within the drop. This problem, which is of importance in evaporative cooling systems, has been studied experimentally for water drops 3–6 mm in diameter falling through air. Study of a simplified set of governing equations indicates that similitude does not exist in this problem. However, it has been found that for this size range an approximate procedure based on the assumption of negligible internal thermal resistance and an empirical transient correction factor applied to the Ranz-Marshall [1] correlation could describe the data very well.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.3450453</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of heat transfer, 1976-02, Vol.98 (1), p.120-126</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-25ad6159fdbf02248d8fc4b0c6b141d604d401d4c521948ab54823d703e77bd93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids></links><search><creatorcontrib>Yao, Shi-Chune</creatorcontrib><creatorcontrib>Schrock, V. E</creatorcontrib><title>Heat and Mass Transfer From Freely Falling Drops</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of the drop shape, and the development of internal circulation within the drop. This problem, which is of importance in evaporative cooling systems, has been studied experimentally for water drops 3–6 mm in diameter falling through air. Study of a simplified set of governing equations indicates that similitude does not exist in this problem. However, it has been found that for this size range an approximate procedure based on the assumption of negligible internal thermal resistance and an empirical transient correction factor applied to the Ranz-Marshall [1] correlation could describe the data very well.</description><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNotjztPwzAUhS0EEqEwMLN4ZUi5175OnBEV0iK16lJmy4lt1CqPyi5D_z1B7XLO8uk8GHtGmCOiesO5JAWk5A3LUAmd64rkLcsAhMiRNN6zh5QOACglVRmDlbcnbgfHNzYlvot2SMFHXsexn8T77sxr23X74Yd_xPGYHtldsF3yT1efse_6c7dY5evt8mvxvs6tJHHKhbKuQFUF14SpmrTToaUG2qJBQlcAOQJ01CqBFWnbKNJCuhKkL8vGVXLGXi-5bRxTij6YY9z3Np4Ngvm_atBcr07sy4W1qffmMP7GYZpmSEJZCPkHOPdMcw</recordid><startdate>197602</startdate><enddate>197602</enddate><creator>Yao, Shi-Chune</creator><creator>Schrock, V. E</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197602</creationdate><title>Heat and Mass Transfer From Freely Falling Drops</title><author>Yao, Shi-Chune ; Schrock, V. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-25ad6159fdbf02248d8fc4b0c6b141d604d401d4c521948ab54823d703e77bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Shi-Chune</creatorcontrib><creatorcontrib>Schrock, V. E</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Shi-Chune</au><au>Schrock, V. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat and Mass Transfer From Freely Falling Drops</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>1976-02</date><risdate>1976</risdate><volume>98</volume><issue>1</issue><spage>120</spage><epage>126</epage><pages>120-126</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><abstract>When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of the drop shape, and the development of internal circulation within the drop. This problem, which is of importance in evaporative cooling systems, has been studied experimentally for water drops 3–6 mm in diameter falling through air. Study of a simplified set of governing equations indicates that similitude does not exist in this problem. However, it has been found that for this size range an approximate procedure based on the assumption of negligible internal thermal resistance and an empirical transient correction factor applied to the Ranz-Marshall [1] correlation could describe the data very well.</abstract><pub>ASME</pub><doi>10.1115/1.3450453</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 1976-02, Vol.98 (1), p.120-126
issn 0022-1481
1528-8943
language eng
recordid cdi_crossref_primary_10_1115_1_3450453
source ASME_美国机械工程师学会过刊
title Heat and Mass Transfer From Freely Falling Drops
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20and%20Mass%20Transfer%20From%20Freely%20Falling%20Drops&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Yao,%20Shi-Chune&rft.date=1976-02&rft.volume=98&rft.issue=1&rft.spage=120&rft.epage=126&rft.pages=120-126&rft.issn=0022-1481&rft.eissn=1528-8943&rft_id=info:doi/10.1115/1.3450453&rft_dat=%3Casme_cross%3E430762%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-25ad6159fdbf02248d8fc4b0c6b141d604d401d4c521948ab54823d703e77bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true