Loading…

Use of Mass as a Perturbation Parameter in Vibrations

Linear vibration problems involving harmonic excitation of discrete and continuous systems are solved by using the classical perturbation technique. The perturbation parameter is proportional to a mass and the square of the excitation frequency. The power series solution for the displacement of some...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering for industry 1967-11, Vol.89 (4), p.639-644
Main Authors: Chicurel, R, Counts, J
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a249t-1a3249f8c77ce225b211864072a9c9fc606b1bdd9dd6f726defcc795a6b3063b3
cites
container_end_page 644
container_issue 4
container_start_page 639
container_title Journal of engineering for industry
container_volume 89
creator Chicurel, R
Counts, J
description Linear vibration problems involving harmonic excitation of discrete and continuous systems are solved by using the classical perturbation technique. The perturbation parameter is proportional to a mass and the square of the excitation frequency. The power series solution for the displacement of some point in the system is converted to the quotient of two polynomials by the use of continued fractions. The eigenvalues (natural frequencies) of the problem are calculated by finding the roots of the denominator polynomial. The situation wherein a quantity which cannot vanish at any frequency can be found is treated as a special case.
doi_str_mv 10.1115/1.3610125
format article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_3610125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>394212</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-1a3249f8c77ce225b211864072a9c9fc606b1bdd9dd6f726defcc795a6b3063b3</originalsourceid><addsrcrecordid>eNotj0FLAzEQhYMoWKsHz15y9bA1k2ySzVGKVqHSHlqvYZJNYIu7K8n24L832sLAGx4fM-8Rcg9sAQDyCRZCAQMuL8gMJG-qxgh5WXbW6AqE1NfkJucDYwBNLWZE7nOgY6QfmDPFMnQb0nRMDqduHOgWE_ZhCol2A_3sXPq38y25iviVw91Z52T_-rJbvlXrzep9-byukNdmqgBF0dh4rX3gXDpevqqaaY7Gm-gVUw5c25q2VVFz1YbovTYSlRNMCSfm5PF016cx5xSi_U5dj-nHArN_fS3Yc9_CPpxYzH2wh_GYhhLNClNz4OIXiP1PVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of Mass as a Perturbation Parameter in Vibrations</title><source>ASME Transactions Journals (Archives)</source><creator>Chicurel, R ; Counts, J</creator><creatorcontrib>Chicurel, R ; Counts, J</creatorcontrib><description>Linear vibration problems involving harmonic excitation of discrete and continuous systems are solved by using the classical perturbation technique. The perturbation parameter is proportional to a mass and the square of the excitation frequency. The power series solution for the displacement of some point in the system is converted to the quotient of two polynomials by the use of continued fractions. The eigenvalues (natural frequencies) of the problem are calculated by finding the roots of the denominator polynomial. The situation wherein a quantity which cannot vanish at any frequency can be found is treated as a special case.</description><identifier>ISSN: 1087-1357</identifier><identifier>ISSN: 0022-0817</identifier><identifier>EISSN: 1528-8935</identifier><identifier>DOI: 10.1115/1.3610125</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of engineering for industry, 1967-11, Vol.89 (4), p.639-644</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-1a3249f8c77ce225b211864072a9c9fc606b1bdd9dd6f726defcc795a6b3063b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38500</link.rule.ids></links><search><creatorcontrib>Chicurel, R</creatorcontrib><creatorcontrib>Counts, J</creatorcontrib><title>Use of Mass as a Perturbation Parameter in Vibrations</title><title>Journal of engineering for industry</title><addtitle>J. Manuf. Sci. Eng</addtitle><description>Linear vibration problems involving harmonic excitation of discrete and continuous systems are solved by using the classical perturbation technique. The perturbation parameter is proportional to a mass and the square of the excitation frequency. The power series solution for the displacement of some point in the system is converted to the quotient of two polynomials by the use of continued fractions. The eigenvalues (natural frequencies) of the problem are calculated by finding the roots of the denominator polynomial. The situation wherein a quantity which cannot vanish at any frequency can be found is treated as a special case.</description><issn>1087-1357</issn><issn>0022-0817</issn><issn>1528-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNotj0FLAzEQhYMoWKsHz15y9bA1k2ySzVGKVqHSHlqvYZJNYIu7K8n24L832sLAGx4fM-8Rcg9sAQDyCRZCAQMuL8gMJG-qxgh5WXbW6AqE1NfkJucDYwBNLWZE7nOgY6QfmDPFMnQb0nRMDqduHOgWE_ZhCol2A_3sXPq38y25iviVw91Z52T_-rJbvlXrzep9-byukNdmqgBF0dh4rX3gXDpevqqaaY7Gm-gVUw5c25q2VVFz1YbovTYSlRNMCSfm5PF016cx5xSi_U5dj-nHArN_fS3Yc9_CPpxYzH2wh_GYhhLNClNz4OIXiP1PVQ</recordid><startdate>19671101</startdate><enddate>19671101</enddate><creator>Chicurel, R</creator><creator>Counts, J</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19671101</creationdate><title>Use of Mass as a Perturbation Parameter in Vibrations</title><author>Chicurel, R ; Counts, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-1a3249f8c77ce225b211864072a9c9fc606b1bdd9dd6f726defcc795a6b3063b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chicurel, R</creatorcontrib><creatorcontrib>Counts, J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering for industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chicurel, R</au><au>Counts, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Mass as a Perturbation Parameter in Vibrations</atitle><jtitle>Journal of engineering for industry</jtitle><stitle>J. Manuf. Sci. Eng</stitle><date>1967-11-01</date><risdate>1967</risdate><volume>89</volume><issue>4</issue><spage>639</spage><epage>644</epage><pages>639-644</pages><issn>1087-1357</issn><issn>0022-0817</issn><eissn>1528-8935</eissn><abstract>Linear vibration problems involving harmonic excitation of discrete and continuous systems are solved by using the classical perturbation technique. The perturbation parameter is proportional to a mass and the square of the excitation frequency. The power series solution for the displacement of some point in the system is converted to the quotient of two polynomials by the use of continued fractions. The eigenvalues (natural frequencies) of the problem are calculated by finding the roots of the denominator polynomial. The situation wherein a quantity which cannot vanish at any frequency can be found is treated as a special case.</abstract><pub>ASME</pub><doi>10.1115/1.3610125</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-1357
ispartof Journal of engineering for industry, 1967-11, Vol.89 (4), p.639-644
issn 1087-1357
0022-0817
1528-8935
language eng
recordid cdi_crossref_primary_10_1115_1_3610125
source ASME Transactions Journals (Archives)
title Use of Mass as a Perturbation Parameter in Vibrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Mass%20as%20a%20Perturbation%20Parameter%20in%20Vibrations&rft.jtitle=Journal%20of%20engineering%20for%20industry&rft.au=Chicurel,%20R&rft.date=1967-11-01&rft.volume=89&rft.issue=4&rft.spage=639&rft.epage=644&rft.pages=639-644&rft.issn=1087-1357&rft.eissn=1528-8935&rft_id=info:doi/10.1115/1.3610125&rft_dat=%3Casme_cross%3E394212%3C/asme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a249t-1a3249f8c77ce225b211864072a9c9fc606b1bdd9dd6f726defcc795a6b3063b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true