Loading…

Reactive-ion etching of high-Q and submicron-diameter GaAs∕AlAs micropillar cavities

We present a fabrication process allowing the realization of high-Q and small-diameter micropillar cavities. The fabrication involves molecular beam epitaxy, electron-beam lithography, and reactive ion etching (RIE). The introduction of O2 to the SiCl4 RIE plasma and the dynamic adjustment of its fl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2005-11, Vol.23 (6), p.2499-2503
Main Authors: Varoutsis, S., Laurent, S., Sagnes, I., Lemaître, A., Ferlazzo, L., Mériadec, C., Patriarche, G., Robert-Philip, I., Abram, I.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a fabrication process allowing the realization of high-Q and small-diameter micropillar cavities. The fabrication involves molecular beam epitaxy, electron-beam lithography, and reactive ion etching (RIE). The introduction of O2 to the SiCl4 RIE plasma and the dynamic adjustment of its flow rate enable the control of the etched profile throughout the process, through the deposition of silicon oxide on the vertical etched surfaces. The resulting cavities have very smooth, straight, and vertical sidewalls and remain optically and mechanically stable for long periods of time. The optical modes sustained by these cavities exhibit record quality factors in excess of 1200 for pillar diameters close to 400nm, which underscores the quality of our process.
ISSN:1071-1023
1520-8567
DOI:10.1116/1.2131084