Loading…

Analysis of a scheme for de-magnified Talbot lithography

The authors describe a photolithographic scheme based on the replication of a periodic transparent mask in a photoresist utilizing the coherent self-imaging Talbot effect. A periodic two-dimensional diffractive structure (or Talbot mask) composed of unit tiles distributed in a square matrix was illu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2011-11, Vol.29 (6), p.06F504-06F504-4
Main Authors: Urbanski, L., Marconi, M. C., Isoyan, A., Stein, A., Menoni, C. S., Rocca, J. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors describe a photolithographic scheme based on the replication of a periodic transparent mask in a photoresist utilizing the coherent self-imaging Talbot effect. A periodic two-dimensional diffractive structure (or Talbot mask) composed of unit tiles distributed in a square matrix was illuminated by a coherent extreme ultraviolet (EUV) beam from a table top EUV laser. The illumination beam was reflected in a spherical mirror and the Talbot mask was placed in the path of the convergent beam. At designed locations determined by the Talbot distance, reduced replicas of the mask were obtained and used to print the slightly de-magnified copies of the mask on the surface of a photoresist. Experimental results showing the de-magnification effect are in good agreement with the diffraction theory. The limits of the technique are discussed.
ISSN:1071-1023
2166-2746
1520-8567
2166-2754
DOI:10.1116/1.3653507