Loading…
Bipolar resistive switching in an amorphous zinc tin oxide memristive device
The integration of amorphous zinc tin oxide (ZTO) into crossbar memristor device structures has been investigated where asymmetric devices were fabricated with Al (top) and Pt (bottom) electrodes. The authors found that these devices had reproducible bipolar resistive switching with high switching r...
Saved in:
Published in: | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2013-01, Vol.31 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The integration of amorphous zinc tin oxide (ZTO) into crossbar memristor device structures has been investigated where asymmetric devices were fabricated with Al (top) and Pt (bottom) electrodes. The authors found that these devices had reproducible bipolar resistive switching with high switching ratios >104 and long retention times of >104 s. Electrical characterization of the devices suggests that both filamentary and interfacial mechanisms are important for device switching. The authors have used secondary ion mass spectrometry to characterize the devices and found that significant interfacial reactions occur at the Al/ZTO interface. |
---|---|
ISSN: | 2166-2746 1520-8567 2166-2754 |
DOI: | 10.1116/1.4767124 |