Loading…

Modeling of counter streaming charged beams in MICHELLE-eBEAM

A new approach implemented in the MICHELLE-eBEAM code [Ovtchinnikov et al., J. Vac. Sci. Technol. B 28, C6J8 (2010)] is designed to take advantage of the graphics processing unit hardware acceleration using novel algorithms to capture inter-particle interactions accurately and efficiently. This appr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2013-11, Vol.31 (6), p.6
Main Authors: Ovtchinnikov, Serguei G., Cooke, Simon J., Mkrtchyan, Masis M., Shtokhamer, Roman, Kostas, Christopher, Petillo, John J., Petric, Paul F., McCord, Mark A., Vlasov, Alexander N., Levush, Baruch
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443
cites cdi_FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443
container_end_page
container_issue 6
container_start_page 6
container_title Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
container_volume 31
creator Ovtchinnikov, Serguei G.
Cooke, Simon J.
Mkrtchyan, Masis M.
Shtokhamer, Roman
Kostas, Christopher
Petillo, John J.
Petric, Paul F.
McCord, Mark A.
Vlasov, Alexander N.
Levush, Baruch
description A new approach implemented in the MICHELLE-eBEAM code [Ovtchinnikov et al., J. Vac. Sci. Technol. B 28, C6J8 (2010)] is designed to take advantage of the graphics processing unit hardware acceleration using novel algorithms to capture inter-particle interactions accurately and efficiently. This approach is used in the simulation of counter streaming charged particle beams, where two beams are colocated in space while propagating in opposite directions, and has applications in lithographic devices such as in Reflective Electron Beam Lithography (REBL) [Petric et al., J. Vac. Sci. Technol. B 27, 161 (2009)]. Modeling such counter streaming beams presents different computational challenges depending on the specific device being modeled. These applications often require the modeling of both global and stochastic space charge, where the latter calls for accurate evaluation of Coulomb interactions. In this paper, the authors report on our progress and demonstrate, for a high current REBL application, the achieved accuracy and performance of the new code.
doi_str_mv 10.1116/1.4827189
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_4827189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_4827189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443</originalsourceid><addsrcrecordid>eNp9j8FLwzAYxYMoWOYO_ge5KmTmS9Ov6cHDLNUNWrzouaRJOitbO5Iq-N_bsaEHwXf5eI8fj-8Rcg18AQB4BwupRAoqOyMRJIIzlWB6TiIBiEykEi_JPIR3PglVwmMekftqsG7b9Rs6tNQMH_3oPA2jd3p3CM2b9htnaTP5QLueVut8VZRlwdxDsayuyEWrt8HNT3dGXh-Ll3zFyuendb4smRFZNrLGJIicxwZijo0Q0yuCO9FoRKUtOjDaykRoYVEJkCp2VrtGSafQplLKeEZujr3GDyF419Z73-20_6qB14fpNdSn6RN7e2SD6UY9dkP_A38O_hes97b9D_7b_A0VQ2TC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of counter streaming charged beams in MICHELLE-eBEAM</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ovtchinnikov, Serguei G. ; Cooke, Simon J. ; Mkrtchyan, Masis M. ; Shtokhamer, Roman ; Kostas, Christopher ; Petillo, John J. ; Petric, Paul F. ; McCord, Mark A. ; Vlasov, Alexander N. ; Levush, Baruch</creator><creatorcontrib>Ovtchinnikov, Serguei G. ; Cooke, Simon J. ; Mkrtchyan, Masis M. ; Shtokhamer, Roman ; Kostas, Christopher ; Petillo, John J. ; Petric, Paul F. ; McCord, Mark A. ; Vlasov, Alexander N. ; Levush, Baruch</creatorcontrib><description>A new approach implemented in the MICHELLE-eBEAM code [Ovtchinnikov et al., J. Vac. Sci. Technol. B 28, C6J8 (2010)] is designed to take advantage of the graphics processing unit hardware acceleration using novel algorithms to capture inter-particle interactions accurately and efficiently. This approach is used in the simulation of counter streaming charged particle beams, where two beams are colocated in space while propagating in opposite directions, and has applications in lithographic devices such as in Reflective Electron Beam Lithography (REBL) [Petric et al., J. Vac. Sci. Technol. B 27, 161 (2009)]. Modeling such counter streaming beams presents different computational challenges depending on the specific device being modeled. These applications often require the modeling of both global and stochastic space charge, where the latter calls for accurate evaluation of Coulomb interactions. In this paper, the authors report on our progress and demonstrate, for a high current REBL application, the achieved accuracy and performance of the new code.</description><identifier>ISSN: 2166-2746</identifier><identifier>EISSN: 1520-8567</identifier><identifier>EISSN: 2166-2754</identifier><identifier>DOI: 10.1116/1.4827189</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures, 2013-11, Vol.31 (6), p.6</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443</citedby><cites>FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ovtchinnikov, Serguei G.</creatorcontrib><creatorcontrib>Cooke, Simon J.</creatorcontrib><creatorcontrib>Mkrtchyan, Masis M.</creatorcontrib><creatorcontrib>Shtokhamer, Roman</creatorcontrib><creatorcontrib>Kostas, Christopher</creatorcontrib><creatorcontrib>Petillo, John J.</creatorcontrib><creatorcontrib>Petric, Paul F.</creatorcontrib><creatorcontrib>McCord, Mark A.</creatorcontrib><creatorcontrib>Vlasov, Alexander N.</creatorcontrib><creatorcontrib>Levush, Baruch</creatorcontrib><title>Modeling of counter streaming charged beams in MICHELLE-eBEAM</title><title>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</title><description>A new approach implemented in the MICHELLE-eBEAM code [Ovtchinnikov et al., J. Vac. Sci. Technol. B 28, C6J8 (2010)] is designed to take advantage of the graphics processing unit hardware acceleration using novel algorithms to capture inter-particle interactions accurately and efficiently. This approach is used in the simulation of counter streaming charged particle beams, where two beams are colocated in space while propagating in opposite directions, and has applications in lithographic devices such as in Reflective Electron Beam Lithography (REBL) [Petric et al., J. Vac. Sci. Technol. B 27, 161 (2009)]. Modeling such counter streaming beams presents different computational challenges depending on the specific device being modeled. These applications often require the modeling of both global and stochastic space charge, where the latter calls for accurate evaluation of Coulomb interactions. In this paper, the authors report on our progress and demonstrate, for a high current REBL application, the achieved accuracy and performance of the new code.</description><issn>2166-2746</issn><issn>1520-8567</issn><issn>2166-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9j8FLwzAYxYMoWOYO_ge5KmTmS9Ov6cHDLNUNWrzouaRJOitbO5Iq-N_bsaEHwXf5eI8fj-8Rcg18AQB4BwupRAoqOyMRJIIzlWB6TiIBiEykEi_JPIR3PglVwmMekftqsG7b9Rs6tNQMH_3oPA2jd3p3CM2b9htnaTP5QLueVut8VZRlwdxDsayuyEWrt8HNT3dGXh-Ll3zFyuendb4smRFZNrLGJIicxwZijo0Q0yuCO9FoRKUtOjDaykRoYVEJkCp2VrtGSafQplLKeEZujr3GDyF419Z73-20_6qB14fpNdSn6RN7e2SD6UY9dkP_A38O_hes97b9D_7b_A0VQ2TC</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Ovtchinnikov, Serguei G.</creator><creator>Cooke, Simon J.</creator><creator>Mkrtchyan, Masis M.</creator><creator>Shtokhamer, Roman</creator><creator>Kostas, Christopher</creator><creator>Petillo, John J.</creator><creator>Petric, Paul F.</creator><creator>McCord, Mark A.</creator><creator>Vlasov, Alexander N.</creator><creator>Levush, Baruch</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201311</creationdate><title>Modeling of counter streaming charged beams in MICHELLE-eBEAM</title><author>Ovtchinnikov, Serguei G. ; Cooke, Simon J. ; Mkrtchyan, Masis M. ; Shtokhamer, Roman ; Kostas, Christopher ; Petillo, John J. ; Petric, Paul F. ; McCord, Mark A. ; Vlasov, Alexander N. ; Levush, Baruch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovtchinnikov, Serguei G.</creatorcontrib><creatorcontrib>Cooke, Simon J.</creatorcontrib><creatorcontrib>Mkrtchyan, Masis M.</creatorcontrib><creatorcontrib>Shtokhamer, Roman</creatorcontrib><creatorcontrib>Kostas, Christopher</creatorcontrib><creatorcontrib>Petillo, John J.</creatorcontrib><creatorcontrib>Petric, Paul F.</creatorcontrib><creatorcontrib>McCord, Mark A.</creatorcontrib><creatorcontrib>Vlasov, Alexander N.</creatorcontrib><creatorcontrib>Levush, Baruch</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovtchinnikov, Serguei G.</au><au>Cooke, Simon J.</au><au>Mkrtchyan, Masis M.</au><au>Shtokhamer, Roman</au><au>Kostas, Christopher</au><au>Petillo, John J.</au><au>Petric, Paul F.</au><au>McCord, Mark A.</au><au>Vlasov, Alexander N.</au><au>Levush, Baruch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of counter streaming charged beams in MICHELLE-eBEAM</atitle><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle><date>2013-11</date><risdate>2013</risdate><volume>31</volume><issue>6</issue><spage>6</spage><pages>6-</pages><issn>2166-2746</issn><eissn>1520-8567</eissn><eissn>2166-2754</eissn><coden>JVTBD9</coden><abstract>A new approach implemented in the MICHELLE-eBEAM code [Ovtchinnikov et al., J. Vac. Sci. Technol. B 28, C6J8 (2010)] is designed to take advantage of the graphics processing unit hardware acceleration using novel algorithms to capture inter-particle interactions accurately and efficiently. This approach is used in the simulation of counter streaming charged particle beams, where two beams are colocated in space while propagating in opposite directions, and has applications in lithographic devices such as in Reflective Electron Beam Lithography (REBL) [Petric et al., J. Vac. Sci. Technol. B 27, 161 (2009)]. Modeling such counter streaming beams presents different computational challenges depending on the specific device being modeled. These applications often require the modeling of both global and stochastic space charge, where the latter calls for accurate evaluation of Coulomb interactions. In this paper, the authors report on our progress and demonstrate, for a high current REBL application, the achieved accuracy and performance of the new code.</abstract><doi>10.1116/1.4827189</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2166-2746
ispartof Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2013-11, Vol.31 (6), p.6
issn 2166-2746
1520-8567
2166-2754
language eng
recordid cdi_crossref_primary_10_1116_1_4827189
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Modeling of counter streaming charged beams in MICHELLE-eBEAM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20counter%20streaming%20charged%20beams%20in%20MICHELLE-eBEAM&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Ovtchinnikov,%20Serguei%20G.&rft.date=2013-11&rft.volume=31&rft.issue=6&rft.spage=6&rft.pages=6-&rft.issn=2166-2746&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.4827189&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_4827189%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-bc566003c1306b2227420e2ba668ad6e1cad452a2d6821483edaeb84e86d74443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true