Loading…

Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field

The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2024-09, Vol.42 (5)
Main Authors: Yan, Minghan, Wu, Huanhuan, Wu, Hao, Peng, Yanli, Yang, Shali
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c154t-ff0b0625bcc78adc35918f6c2421e7f0bd30c6b206b32edbd8e30f20c57275053
container_end_page
container_issue 5
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 42
creator Yan, Minghan
Wu, Huanhuan
Wu, Hao
Peng, Yanli
Yang, Shali
description The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indicate that under both weak and strong magnetic field conditions, plasma density increases with the increase in these discharge parameters. However, the principle of density increase under weak and strong magnetic field conditions is slightly different. The strong magnetic field plays a crucial role in strongly constraining electrons. Under weak magnetic field conditions, the mutual transition between stochastic heating and ohmic heating can be observed, while under strong magnetic field conditions, ohmic heating predominantly prevails. Furthermore, the simulation results also indicate that a strong magnetic field can effectively reduce the voltage threshold for the transition from the α mode to the γ mode. The strong magnetic field strongly confines secondary electrons near the sheath, allowing them to interact multiple times with the sheath and acquire higher energy, thereby making the γ mode more likely to occur.
doi_str_mv 10.1116/6.0003692
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_6_0003692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0003692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-ff0b0625bcc78adc35918f6c2421e7f0bd30c6b206b32edbd8e30f20c57275053</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsH_4NcFbZOkia7PUrxC4pe9LxkJ5M2sl8kqdD_3i317GmYeT-G9x5jtwIWQgjzYBYAoMxKnrGZ0BKKSuvVOZtBqZaFFCAu2VVK3xMkJZgZC-_7jmJA2_KU9-7AB8_zjjh5T5jTcXUh4c7GLfHRRttRpjjde452tBhy-KH2wHHYjy05PrY2dZaHnlve2W1POSD3gVp3zS68bRPd_M05-3p--ly_FpuPl7f146ZAoZe58B4aMFI3iGVlHSq9EpU3KJdSUDmJTgGaZjLfKEmucRUp8BJQl7LUoNWc3Z3-YhxSiuTrMYbOxkMtoD52VJv6r6OJvT-xaQpicxj6f-BfuxJnnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yan, Minghan ; Wu, Huanhuan ; Wu, Hao ; Peng, Yanli ; Yang, Shali</creator><creatorcontrib>Yan, Minghan ; Wu, Huanhuan ; Wu, Hao ; Peng, Yanli ; Yang, Shali</creatorcontrib><description>The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indicate that under both weak and strong magnetic field conditions, plasma density increases with the increase in these discharge parameters. However, the principle of density increase under weak and strong magnetic field conditions is slightly different. The strong magnetic field plays a crucial role in strongly constraining electrons. Under weak magnetic field conditions, the mutual transition between stochastic heating and ohmic heating can be observed, while under strong magnetic field conditions, ohmic heating predominantly prevails. Furthermore, the simulation results also indicate that a strong magnetic field can effectively reduce the voltage threshold for the transition from the α mode to the γ mode. The strong magnetic field strongly confines secondary electrons near the sheath, allowing them to interact multiple times with the sheath and acquire higher energy, thereby making the γ mode more likely to occur.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0003692</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2024-09, Vol.42 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-ff0b0625bcc78adc35918f6c2421e7f0bd30c6b206b32edbd8e30f20c57275053</cites><orcidid>0000-0001-7348-7831 ; 0009-0006-7703-7380 ; 0000-0001-5011-8785 ; 0000-0003-1074-6853 ; 0009-0002-7280-8132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Minghan</creatorcontrib><creatorcontrib>Wu, Huanhuan</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Peng, Yanli</creatorcontrib><creatorcontrib>Yang, Shali</creatorcontrib><title>Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indicate that under both weak and strong magnetic field conditions, plasma density increases with the increase in these discharge parameters. However, the principle of density increase under weak and strong magnetic field conditions is slightly different. The strong magnetic field plays a crucial role in strongly constraining electrons. Under weak magnetic field conditions, the mutual transition between stochastic heating and ohmic heating can be observed, while under strong magnetic field conditions, ohmic heating predominantly prevails. Furthermore, the simulation results also indicate that a strong magnetic field can effectively reduce the voltage threshold for the transition from the α mode to the γ mode. The strong magnetic field strongly confines secondary electrons near the sheath, allowing them to interact multiple times with the sheath and acquire higher energy, thereby making the γ mode more likely to occur.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsH_4NcFbZOkia7PUrxC4pe9LxkJ5M2sl8kqdD_3i317GmYeT-G9x5jtwIWQgjzYBYAoMxKnrGZ0BKKSuvVOZtBqZaFFCAu2VVK3xMkJZgZC-_7jmJA2_KU9-7AB8_zjjh5T5jTcXUh4c7GLfHRRttRpjjde452tBhy-KH2wHHYjy05PrY2dZaHnlve2W1POSD3gVp3zS68bRPd_M05-3p--ly_FpuPl7f146ZAoZe58B4aMFI3iGVlHSq9EpU3KJdSUDmJTgGaZjLfKEmucRUp8BJQl7LUoNWc3Z3-YhxSiuTrMYbOxkMtoD52VJv6r6OJvT-xaQpicxj6f-BfuxJnnA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Yan, Minghan</creator><creator>Wu, Huanhuan</creator><creator>Wu, Hao</creator><creator>Peng, Yanli</creator><creator>Yang, Shali</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7348-7831</orcidid><orcidid>https://orcid.org/0009-0006-7703-7380</orcidid><orcidid>https://orcid.org/0000-0001-5011-8785</orcidid><orcidid>https://orcid.org/0000-0003-1074-6853</orcidid><orcidid>https://orcid.org/0009-0002-7280-8132</orcidid></search><sort><creationdate>202409</creationdate><title>Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field</title><author>Yan, Minghan ; Wu, Huanhuan ; Wu, Hao ; Peng, Yanli ; Yang, Shali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-ff0b0625bcc78adc35918f6c2421e7f0bd30c6b206b32edbd8e30f20c57275053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Minghan</creatorcontrib><creatorcontrib>Wu, Huanhuan</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Peng, Yanli</creatorcontrib><creatorcontrib>Yang, Shali</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Minghan</au><au>Wu, Huanhuan</au><au>Wu, Hao</au><au>Peng, Yanli</au><au>Yang, Shali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2024-09</date><risdate>2024</risdate><volume>42</volume><issue>5</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indicate that under both weak and strong magnetic field conditions, plasma density increases with the increase in these discharge parameters. However, the principle of density increase under weak and strong magnetic field conditions is slightly different. The strong magnetic field plays a crucial role in strongly constraining electrons. Under weak magnetic field conditions, the mutual transition between stochastic heating and ohmic heating can be observed, while under strong magnetic field conditions, ohmic heating predominantly prevails. Furthermore, the simulation results also indicate that a strong magnetic field can effectively reduce the voltage threshold for the transition from the α mode to the γ mode. The strong magnetic field strongly confines secondary electrons near the sheath, allowing them to interact multiple times with the sheath and acquire higher energy, thereby making the γ mode more likely to occur.</abstract><doi>10.1116/6.0003692</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7348-7831</orcidid><orcidid>https://orcid.org/0009-0006-7703-7380</orcidid><orcidid>https://orcid.org/0000-0001-5011-8785</orcidid><orcidid>https://orcid.org/0000-0003-1074-6853</orcidid><orcidid>https://orcid.org/0009-0002-7280-8132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2024-09, Vol.42 (5)
issn 0734-2101
1520-8559
language eng
recordid cdi_crossref_primary_10_1116_6_0003692
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20the%20effects%20of%20discharge%20parameters%20on%20capacitively%20coupled%20plasma%20in%20a%20magnetic%20field&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Yan,%20Minghan&rft.date=2024-09&rft.volume=42&rft.issue=5&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0003692&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_6_0003692%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c154t-ff0b0625bcc78adc35918f6c2421e7f0bd30c6b206b32edbd8e30f20c57275053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true