Loading…
Compact optical instrument for surface classification using self-mixing interference in a laser diode
A compact and noncontact sensor using the self-mixing interference inside a semiconductor laser is designed to classify moving surfaces. An artificial neural network is employed for the data processing. The results indicate more than 92 correct classification for eight different surfaces of differen...
Saved in:
Published in: | Optical Engineering 2001-01, Vol.40 (1), p.38-43 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283 |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283 |
container_end_page | 43 |
container_issue | 1 |
container_start_page | 38 |
container_title | Optical Engineering |
container_volume | 40 |
creator | O¨zdemir, S¸ahin Kaya Shinohara, Shigenobu Ito, Satoshi Takamiya, Sotetsu Yoshida, Hirofumi |
description | A compact and noncontact sensor using the self-mixing interference inside a semiconductor laser is designed to classify moving surfaces. An artificial neural network is employed for the data processing. The results indicate more than 92 correct classification for eight different surfaces of different materials, different manufacturing methods and different surface roughnesses. The accuracy of the system is restricted by the localized irregularities on the surface and the mechanical instabilities of the carrying stage over which the surfaces are placed. © |
doi_str_mv | 10.1117/1.1331268 |
format | article |
fullrecord | <record><control><sourceid>crossref_spie_</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_1331268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_1331268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKsH_0GuHrZmkiabPZZSq1CoiJ6X2exEIvtFsgX9925tcQ7vvIdn5vAwdg9iAQD5IyxAKZDGXrAZaCMyqYS6ZDMhCsiUtOaa3aT0JYSQhbUzRuu-HdCNvB_G4LDhoUtjPLTUjdz3kadD9OiIuwZTCn5CxtB3_JBC98kTNT5rw_exh26k6ClSN9Gh48inC4q8Dn1Nt-zKY5Po7rzn7ONp875-znb77ct6tcuczMWYSUdaoav0ElAbiVJ51J6Wlck15XXlBaLwYHSFdVEgkBeFBQkGUVsrrZqzh9NfF_uUIvlyiKHF-FOCKI9-SijPfiZWntg0BPrn9q-b7ept0iOW4m_gGMqeuvoF7_Nnmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compact optical instrument for surface classification using self-mixing interference in a laser diode</title><source>SPIE_国际光学工程学会期刊</source><creator>O¨zdemir, S¸ahin Kaya ; Shinohara, Shigenobu ; Ito, Satoshi ; Takamiya, Sotetsu ; Yoshida, Hirofumi</creator><creatorcontrib>O¨zdemir, S¸ahin Kaya ; Shinohara, Shigenobu ; Ito, Satoshi ; Takamiya, Sotetsu ; Yoshida, Hirofumi</creatorcontrib><description>A compact and noncontact sensor using the self-mixing interference inside a semiconductor laser is designed to classify moving surfaces. An artificial neural network is employed for the data processing. The results indicate more than 92 correct classification for eight different surfaces of different materials, different manufacturing methods and different surface roughnesses. The accuracy of the system is restricted by the localized irregularities on the surface and the mechanical instabilities of the carrying stage over which the surfaces are placed. ©</description><identifier>ISSN: 0091-3286</identifier><identifier>EISSN: 1560-2303</identifier><identifier>DOI: 10.1117/1.1331268</identifier><identifier>CODEN: OPEGAR</identifier><language>eng</language><subject>artificial neural network ; optical feedback ; optical sensor ; self-mixing laser diode ; semiconductor lasers ; surface classification</subject><ispartof>Optical Engineering, 2001-01, Vol.40 (1), p.38-43</ispartof><rights>2001 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283</citedby><cites>FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>O¨zdemir, S¸ahin Kaya</creatorcontrib><creatorcontrib>Shinohara, Shigenobu</creatorcontrib><creatorcontrib>Ito, Satoshi</creatorcontrib><creatorcontrib>Takamiya, Sotetsu</creatorcontrib><creatorcontrib>Yoshida, Hirofumi</creatorcontrib><title>Compact optical instrument for surface classification using self-mixing interference in a laser diode</title><title>Optical Engineering</title><description>A compact and noncontact sensor using the self-mixing interference inside a semiconductor laser is designed to classify moving surfaces. An artificial neural network is employed for the data processing. The results indicate more than 92 correct classification for eight different surfaces of different materials, different manufacturing methods and different surface roughnesses. The accuracy of the system is restricted by the localized irregularities on the surface and the mechanical instabilities of the carrying stage over which the surfaces are placed. ©</description><subject>artificial neural network</subject><subject>optical feedback</subject><subject>optical sensor</subject><subject>self-mixing laser diode</subject><subject>semiconductor lasers</subject><subject>surface classification</subject><issn>0091-3286</issn><issn>1560-2303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKsH_0GuHrZmkiabPZZSq1CoiJ6X2exEIvtFsgX9925tcQ7vvIdn5vAwdg9iAQD5IyxAKZDGXrAZaCMyqYS6ZDMhCsiUtOaa3aT0JYSQhbUzRuu-HdCNvB_G4LDhoUtjPLTUjdz3kadD9OiIuwZTCn5CxtB3_JBC98kTNT5rw_exh26k6ClSN9Gh48inC4q8Dn1Nt-zKY5Po7rzn7ONp875-znb77ct6tcuczMWYSUdaoav0ElAbiVJ51J6Wlck15XXlBaLwYHSFdVEgkBeFBQkGUVsrrZqzh9NfF_uUIvlyiKHF-FOCKI9-SijPfiZWntg0BPrn9q-b7ept0iOW4m_gGMqeuvoF7_Nnmg</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>O¨zdemir, S¸ahin Kaya</creator><creator>Shinohara, Shigenobu</creator><creator>Ito, Satoshi</creator><creator>Takamiya, Sotetsu</creator><creator>Yoshida, Hirofumi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010101</creationdate><title>Compact optical instrument for surface classification using self-mixing interference in a laser diode</title><author>O¨zdemir, S¸ahin Kaya ; Shinohara, Shigenobu ; Ito, Satoshi ; Takamiya, Sotetsu ; Yoshida, Hirofumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>artificial neural network</topic><topic>optical feedback</topic><topic>optical sensor</topic><topic>self-mixing laser diode</topic><topic>semiconductor lasers</topic><topic>surface classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O¨zdemir, S¸ahin Kaya</creatorcontrib><creatorcontrib>Shinohara, Shigenobu</creatorcontrib><creatorcontrib>Ito, Satoshi</creatorcontrib><creatorcontrib>Takamiya, Sotetsu</creatorcontrib><creatorcontrib>Yoshida, Hirofumi</creatorcontrib><collection>CrossRef</collection><jtitle>Optical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O¨zdemir, S¸ahin Kaya</au><au>Shinohara, Shigenobu</au><au>Ito, Satoshi</au><au>Takamiya, Sotetsu</au><au>Yoshida, Hirofumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact optical instrument for surface classification using self-mixing interference in a laser diode</atitle><jtitle>Optical Engineering</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>40</volume><issue>1</issue><spage>38</spage><epage>43</epage><pages>38-43</pages><issn>0091-3286</issn><eissn>1560-2303</eissn><coden>OPEGAR</coden><abstract>A compact and noncontact sensor using the self-mixing interference inside a semiconductor laser is designed to classify moving surfaces. An artificial neural network is employed for the data processing. The results indicate more than 92 correct classification for eight different surfaces of different materials, different manufacturing methods and different surface roughnesses. The accuracy of the system is restricted by the localized irregularities on the surface and the mechanical instabilities of the carrying stage over which the surfaces are placed. ©</abstract><doi>10.1117/1.1331268</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-3286 |
ispartof | Optical Engineering, 2001-01, Vol.40 (1), p.38-43 |
issn | 0091-3286 1560-2303 |
language | eng |
recordid | cdi_crossref_primary_10_1117_1_1331268 |
source | SPIE_国际光学工程学会期刊 |
subjects | artificial neural network optical feedback optical sensor self-mixing laser diode semiconductor lasers surface classification |
title | Compact optical instrument for surface classification using self-mixing interference in a laser diode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20optical%20instrument%20for%20surface%20classification%20using%20self-mixing%20interference%20in%20a%20laser%20diode&rft.jtitle=Optical%20Engineering&rft.au=O%C2%A8zdemir,%20S%C2%B8ahin%20Kaya&rft.date=2001-01-01&rft.volume=40&rft.issue=1&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.issn=0091-3286&rft.eissn=1560-2303&rft.coden=OPEGAR&rft_id=info:doi/10.1117/1.1331268&rft_dat=%3Ccrossref_spie_%3E10_1117_1_1331268%3C/crossref_spie_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-2ce53acb541a562a23fa5fe4b675e7dbf0aa0f165bad99a1ef0981216aa588283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |