Loading…

Compensated telescope system with programmable diffractive optic

Diffractive wavefront control with programmable optically efficient modulo gratings has been successfully demonstrated as a means of compensating large optical aberrations and steering an outgoing beam over small angles without mechanical motion. This work builds on past work to demonstrate the inte...

Full description

Saved in:
Bibliographic Details
Published in:Optical Engineering 2005-02, Vol.44 (2), p.023201-023209
Main Authors: Gruneisen, Mark T, Dymale, Raymond C, Rotge, James R, DeSandre, Lewis F, Lubin, Donald L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diffractive wavefront control with programmable optically efficient modulo gratings has been successfully demonstrated as a means of compensating large optical aberrations and steering an outgoing beam over small angles without mechanical motion. This work builds on past work to demonstrate the integrated performance of a programmable diffractive element of large pixel count with a telescope system. More specifically, a liquid-crystal-based spatial light modulator is used as a reconfigurable diffractive optical element in a telescope system to compensate for large aberrations associated with variations in object range and field angle within the telescope's field of regard. The telescope consists of a conventional primary mirror that gimbals relative to the other components of the system and a programmable diffractive optic that compensates for more than 40 waves of aberration associated with defocus and off-axis aberrations. In this setup, aberration compensation via the programmable diffractive optic allows the object range to be varied by 160 times the depth of focus and increases the diffraction-limited field of regard by a factor of 70 while maintaining near-diffraction-limited performance. ©
ISSN:0091-3286
1560-2303
DOI:10.1117/1.1849552