Loading…
Compensated telescope system with programmable diffractive optic
Diffractive wavefront control with programmable optically efficient modulo gratings has been successfully demonstrated as a means of compensating large optical aberrations and steering an outgoing beam over small angles without mechanical motion. This work builds on past work to demonstrate the inte...
Saved in:
Published in: | Optical Engineering 2005-02, Vol.44 (2), p.023201-023209 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diffractive wavefront control with programmable optically efficient modulo gratings has been successfully demonstrated as a means of compensating large optical aberrations and steering an outgoing beam over small angles without mechanical motion. This work builds on past work to demonstrate the integrated performance of a programmable diffractive element of large pixel count with a telescope system. More specifically, a liquid-crystal-based spatial light modulator is used as a reconfigurable diffractive optical element in a telescope system to compensate for large aberrations associated with variations in object range and field angle within the telescope's field of regard. The telescope consists of a conventional primary mirror that gimbals relative to the other components of the system and a programmable diffractive optic that compensates for more than 40 waves of aberration associated with defocus and off-axis aberrations. In this setup, aberration compensation via the programmable diffractive optic allows the object range to be varied by 160 times the depth of focus and increases the diffraction-limited field of regard by a factor of 70 while maintaining near-diffraction-limited performance. © |
---|---|
ISSN: | 0091-3286 1560-2303 |
DOI: | 10.1117/1.1849552 |