Loading…
Fabrication of diffractive optics by use of slow tool servo diamond turning process
In recent years, it has become possible to fabricate complicated optical surfaces using multi-axis ultraprecision machines. Two diffractive optical designs were fabricated using an ultraprecision diamond turning machine equipped with four independent axes. Unlike the conventional clean-room-based mi...
Saved in:
Published in: | Optical Engineering 2006-11, Vol.45 (11), p.113401-113409 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3 |
container_end_page | 113409 |
container_issue | 11 |
container_start_page | 113401 |
container_title | Optical Engineering |
container_volume | 45 |
creator | Li, Lei Yi, Allen Y Huang, Chunning Grewell, David A Benatar, Avraham Chen, Yang |
description | In recent years, it has become possible to fabricate complicated optical surfaces using multi-axis ultraprecision machines. Two diffractive optical designs were fabricated using an ultraprecision diamond turning machine equipped with four independent axes. Unlike the conventional clean-room-based micromachining process, this research demonstrates the development of two innovative diamond tool trajectories that allow the entire diffractive pattern to be machined in a single operation directly, without going through multiple steps, as commonly used in conventional lithography processes. The machined diffractive optical elements were measured for curve geometry and surface roughness. In addition, the optical performance was also evaluated. Finally, a simple welding test setup was utilized to test the 256-level diffractive optical elements (DOEs). Compared to conventional approaches where feature indexing is difficult and unreliable, the slow tool servo (STS) process can be utilized to produce DOEs with accurate geometry and optical surface finish; therefore, the process may be called non-clean-room or maskless micromachining. Unlike its predecessors, this micromachining process which is based on ultraprecision diamond machining can be used to produce true three-dimensional (3D) features in a single operation, thus making it a promising technology for micro-optical, electromechanical component fabrication. Moreover, the 3D micro features can be readily applied to a freeform substrate, making this process a unique approach for fabrication of complicated micro-optical devices. |
doi_str_mv | 10.1117/1.2387142 |
format | article |
fullrecord | <record><control><sourceid>crossref_spie_</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_2387142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_2387142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnaRf9A2y6czkiyLC1DyKMQSOljbWRZLiqJZSQnJX9fpwndzDDcc2dxCHlEmCBi8YwTxlWBgl2REeYSMsaBX5MRgMaMMyVvyV1K3wDAtFIj8r4wVfTW9D60NDS09k0Tje39wdHQ9d4mWh3pPrlTmLbhh_YhbGly8RAG2OxCW9N-H1vfftEuButSuic3jdkm93DZY_K5mH_MVtl6s3yZTdeZ5Vz1GUfOay20Y8oqhZWxVWG0qwArpbiUeQGay1y5vBC10TXkShRy6OYgGiYdH5On818bQ0rRNWUX_c7EY4lQnmyUWF5sDCw7s6nz7p_bvM6X07dBBoj8NIcScgEIfwf_BT1dXxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fabrication of diffractive optics by use of slow tool servo diamond turning process</title><source>SPIE Digital Library</source><creator>Li, Lei ; Yi, Allen Y ; Huang, Chunning ; Grewell, David A ; Benatar, Avraham ; Chen, Yang</creator><creatorcontrib>Li, Lei ; Yi, Allen Y ; Huang, Chunning ; Grewell, David A ; Benatar, Avraham ; Chen, Yang</creatorcontrib><description>In recent years, it has become possible to fabricate complicated optical surfaces using multi-axis ultraprecision machines. Two diffractive optical designs were fabricated using an ultraprecision diamond turning machine equipped with four independent axes. Unlike the conventional clean-room-based micromachining process, this research demonstrates the development of two innovative diamond tool trajectories that allow the entire diffractive pattern to be machined in a single operation directly, without going through multiple steps, as commonly used in conventional lithography processes. The machined diffractive optical elements were measured for curve geometry and surface roughness. In addition, the optical performance was also evaluated. Finally, a simple welding test setup was utilized to test the 256-level diffractive optical elements (DOEs). Compared to conventional approaches where feature indexing is difficult and unreliable, the slow tool servo (STS) process can be utilized to produce DOEs with accurate geometry and optical surface finish; therefore, the process may be called non-clean-room or maskless micromachining. Unlike its predecessors, this micromachining process which is based on ultraprecision diamond machining can be used to produce true three-dimensional (3D) features in a single operation, thus making it a promising technology for micro-optical, electromechanical component fabrication. Moreover, the 3D micro features can be readily applied to a freeform substrate, making this process a unique approach for fabrication of complicated micro-optical devices.</description><identifier>ISSN: 0091-3286</identifier><identifier>EISSN: 1560-2303</identifier><identifier>DOI: 10.1117/1.2387142</identifier><identifier>CODEN: OPEGAR</identifier><language>eng</language><subject>diffractive optical elements ; slow tool servo (STS) ; surface finish</subject><ispartof>Optical Engineering, 2006-11, Vol.45 (11), p.113401-113409</ispartof><rights>2006 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3</citedby><cites>FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.2387142$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://dx.doi.org/10.1117/1.2387142$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,18964,27923,27924,55385,55386</link.rule.ids></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Yi, Allen Y</creatorcontrib><creatorcontrib>Huang, Chunning</creatorcontrib><creatorcontrib>Grewell, David A</creatorcontrib><creatorcontrib>Benatar, Avraham</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><title>Fabrication of diffractive optics by use of slow tool servo diamond turning process</title><title>Optical Engineering</title><description>In recent years, it has become possible to fabricate complicated optical surfaces using multi-axis ultraprecision machines. Two diffractive optical designs were fabricated using an ultraprecision diamond turning machine equipped with four independent axes. Unlike the conventional clean-room-based micromachining process, this research demonstrates the development of two innovative diamond tool trajectories that allow the entire diffractive pattern to be machined in a single operation directly, without going through multiple steps, as commonly used in conventional lithography processes. The machined diffractive optical elements were measured for curve geometry and surface roughness. In addition, the optical performance was also evaluated. Finally, a simple welding test setup was utilized to test the 256-level diffractive optical elements (DOEs). Compared to conventional approaches where feature indexing is difficult and unreliable, the slow tool servo (STS) process can be utilized to produce DOEs with accurate geometry and optical surface finish; therefore, the process may be called non-clean-room or maskless micromachining. Unlike its predecessors, this micromachining process which is based on ultraprecision diamond machining can be used to produce true three-dimensional (3D) features in a single operation, thus making it a promising technology for micro-optical, electromechanical component fabrication. Moreover, the 3D micro features can be readily applied to a freeform substrate, making this process a unique approach for fabrication of complicated micro-optical devices.</description><subject>diffractive optical elements</subject><subject>slow tool servo (STS)</subject><subject>surface finish</subject><issn>0091-3286</issn><issn>1560-2303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAQRUVpoWnaRf9A2y6czkiyLC1DyKMQSOljbWRZLiqJZSQnJX9fpwndzDDcc2dxCHlEmCBi8YwTxlWBgl2REeYSMsaBX5MRgMaMMyVvyV1K3wDAtFIj8r4wVfTW9D60NDS09k0Tje39wdHQ9d4mWh3pPrlTmLbhh_YhbGly8RAG2OxCW9N-H1vfftEuButSuic3jdkm93DZY_K5mH_MVtl6s3yZTdeZ5Vz1GUfOay20Y8oqhZWxVWG0qwArpbiUeQGay1y5vBC10TXkShRy6OYgGiYdH5On818bQ0rRNWUX_c7EY4lQnmyUWF5sDCw7s6nz7p_bvM6X07dBBoj8NIcScgEIfwf_BT1dXxU</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Li, Lei</creator><creator>Yi, Allen Y</creator><creator>Huang, Chunning</creator><creator>Grewell, David A</creator><creator>Benatar, Avraham</creator><creator>Chen, Yang</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061101</creationdate><title>Fabrication of diffractive optics by use of slow tool servo diamond turning process</title><author>Li, Lei ; Yi, Allen Y ; Huang, Chunning ; Grewell, David A ; Benatar, Avraham ; Chen, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>diffractive optical elements</topic><topic>slow tool servo (STS)</topic><topic>surface finish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Yi, Allen Y</creatorcontrib><creatorcontrib>Huang, Chunning</creatorcontrib><creatorcontrib>Grewell, David A</creatorcontrib><creatorcontrib>Benatar, Avraham</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><collection>CrossRef</collection><jtitle>Optical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Yi, Allen Y</au><au>Huang, Chunning</au><au>Grewell, David A</au><au>Benatar, Avraham</au><au>Chen, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of diffractive optics by use of slow tool servo diamond turning process</atitle><jtitle>Optical Engineering</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>45</volume><issue>11</issue><spage>113401</spage><epage>113409</epage><pages>113401-113409</pages><issn>0091-3286</issn><eissn>1560-2303</eissn><coden>OPEGAR</coden><abstract>In recent years, it has become possible to fabricate complicated optical surfaces using multi-axis ultraprecision machines. Two diffractive optical designs were fabricated using an ultraprecision diamond turning machine equipped with four independent axes. Unlike the conventional clean-room-based micromachining process, this research demonstrates the development of two innovative diamond tool trajectories that allow the entire diffractive pattern to be machined in a single operation directly, without going through multiple steps, as commonly used in conventional lithography processes. The machined diffractive optical elements were measured for curve geometry and surface roughness. In addition, the optical performance was also evaluated. Finally, a simple welding test setup was utilized to test the 256-level diffractive optical elements (DOEs). Compared to conventional approaches where feature indexing is difficult and unreliable, the slow tool servo (STS) process can be utilized to produce DOEs with accurate geometry and optical surface finish; therefore, the process may be called non-clean-room or maskless micromachining. Unlike its predecessors, this micromachining process which is based on ultraprecision diamond machining can be used to produce true three-dimensional (3D) features in a single operation, thus making it a promising technology for micro-optical, electromechanical component fabrication. Moreover, the 3D micro features can be readily applied to a freeform substrate, making this process a unique approach for fabrication of complicated micro-optical devices.</abstract><doi>10.1117/1.2387142</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-3286 |
ispartof | Optical Engineering, 2006-11, Vol.45 (11), p.113401-113409 |
issn | 0091-3286 1560-2303 |
language | eng |
recordid | cdi_crossref_primary_10_1117_1_2387142 |
source | SPIE Digital Library |
subjects | diffractive optical elements slow tool servo (STS) surface finish |
title | Fabrication of diffractive optics by use of slow tool servo diamond turning process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20diffractive%20optics%20by%20use%20of%20slow%20tool%20servo%20diamond%20turning%20process&rft.jtitle=Optical%20Engineering&rft.au=Li,%20Lei&rft.date=2006-11-01&rft.volume=45&rft.issue=11&rft.spage=113401&rft.epage=113409&rft.pages=113401-113409&rft.issn=0091-3286&rft.eissn=1560-2303&rft.coden=OPEGAR&rft_id=info:doi/10.1117/1.2387142&rft_dat=%3Ccrossref_spie_%3E10_1117_1_2387142%3C/crossref_spie_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-3133d949e28c881bacb7a9eb01b8836657093658e574da9d058476c33504f26e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |