Loading…

Deep-penetration photoacoustic array imaging of calcifications

Calcifications are one of the most important indicators for early breast cancer detection. We explore the feasibility of deep-penetration photoacoustic (PA) imaging of calcifications based on a medical ultrasound array imaging platform. Intralipid and chicken breast phantoms embedded with different-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical optics 2013-06, Vol.18 (6), p.066002-066002
Main Authors: Hsiao, Tsai-Chu, Cheng, Yao-Yu, Tein, Wan-Ting, Luo, Shih-Bin, Chiou, De-Yi, Chung, Ren-Jei, Li, Meng-Lin
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calcifications are one of the most important indicators for early breast cancer detection. We explore the feasibility of deep-penetration photoacoustic (PA) imaging of calcifications based on a medical ultrasound array imaging platform. Intralipid and chicken breast phantoms embedded with different-sized hydroxyapatite (HA) particles, which are the major components of calcifications, were imaged to verify the equipment's capability and penetration depth for the visualization of calcifications. An optimal near-infrared excitation wavelength was selected to maximize PA signals of HAs, resulting in a better HA signal-to-blood ratio. We demonstrated that PA imaging is capable of visualizing 0.5-mm HA particles at a depth of 3 cm in chicken breast phantoms. The noise-equivalent penetration depth of the system for visualizing 0.5-mm HA particles in the human breast was estimated to be about 2.9 to 3.5 cm, which is clinically relevant as calcifications are usually found at a depth of 0.6 to 3.0 cm. Moreover, the feasibility of differentiating HA from blood by the PA spectroscopic technique was presented and the mechanism of the HA signal generation was discussed. The results show that PA imaging is a promising technique for real-time visualization of breast calcifications.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.JBO.18.6.066002