Loading…
Improved removal of blood contamination from ThinPrep cervical cytology samples for Raman spectroscopic analysis
There is an unmet need for methods to help in the early detection of cervical precancer. Optical spectroscopy-based techniques, such as Raman spectroscopy, have shown great potential for diagnosis of different cancers, including cervical cancer. However, relatively few studies have been carried out...
Saved in:
Published in: | Journal of biomedical optics 2018-05, Vol.23 (5), p.055001-055001 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is an unmet need for methods to help in the early detection of cervical precancer. Optical spectroscopy-based techniques, such as Raman spectroscopy, have shown great potential for diagnosis of different cancers, including cervical cancer. However, relatively few studies have been carried out on liquid-based cytology (LBC) pap test specimens and confounding factors, such as blood contamination, have been identified. Previous work reported a method to remove blood contamination before Raman spectroscopy by pretreatment of the slides with hydrogen peroxide. The aim of the present study was to extend this work to excessively bloody samples to see if these could be rendered suitable for Raman spectroscopy. LBC ThinPrep specimens were treated by adding hydrogen peroxide directly to the vial before slide preparation. Good quality Raman spectra were recorded from negative and high grade (HG) cytology samples with no blood contamination and with heavy blood contamination. Good classification between negative and HG cytology could be achieved for samples with no blood contamination (sensitivity 92%, specificity 93%) and heavy blood contamination (sensitivity 89%, specificity 88%) with poorer classification when samples were combined (sensitivity 82%, specificity 87%). This study demonstrates for the first time the improved potential of Raman spectroscopy for analysis of ThinPrep specimens regardless of blood contamination. |
---|---|
ISSN: | 1083-3668 1560-2281 |
DOI: | 10.1117/1.JBO.23.5.055001 |