Loading…

Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. Two approaches based on modeling the nonsubsampled Shearlet transform (NSST) coefficients are presented. Two-sided generalized Gamma distribution and normal inverse Gaussian probability density function ha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied remote sensing 2016-01, Vol.10 (1), p.015002-015002
Main Authors: Jafari, Saeed, Ghofrani, Sedigheh
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033
cites cdi_FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033
container_end_page 015002
container_issue 1
container_start_page 015002
container_title Journal of applied remote sensing
container_volume 10
creator Jafari, Saeed
Ghofrani, Sedigheh
description Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. Two approaches based on modeling the nonsubsampled Shearlet transform (NSST) coefficients are presented. Two-sided generalized Gamma distribution and normal inverse Gaussian probability density function have been used to model the statistics of NSST coefficients. Bayesian maximum a posteriori estimator is applied to the corrupted NSST coefficients in order to estimate the noise-free NSST coefficients. Finally, experimental results, according to objective and subjective criteria, carried out on both artificially speckled images and the true SAR images, demonstrate that the proposed methods outperform other state of art references via two points of view, speckle noise reduction and image quality preservation.
doi_str_mv 10.1117/1.JRS.10.015002
format article
fullrecord <record><control><sourceid>crossref_spie_</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_JRS_10_015002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_JRS_10_015002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKZqz-AtN66TuxjVWihqgSiVBytPNaQksSRnQrB15MQDpWAy-7O7s5oNIRcAhsBQDSG0epxM2oRA8HY5IgMQHEIOChxfDCfkjPvd4wJLmU0IJutz6sX2rxbmlo0Jk9zrBpPS5th0V2soZWt_D7xcVkXmNHNK8auwIY2Lq68sa6kbaEZ-hrTt45zTk5MXHi8-OlDsl3cPM1vg_X98m4-WwcpF7IJxFRJjkyiSKWCEHmiMOIZi8IJIKrYSAgNSMMRwyyUWSITwfk0miqjGDDOh2Tc66bOeu_Q6NrlZew-NDDdZaJBt5l0qM-kZTz3DF_nqHd276rWoF7N-i_Qn3l9gHrW93Lmmjwt8OF68fteZ6ZVvvpL-T8jX5A6f3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling</title><source>SPIE Digital Library Journals</source><creator>Jafari, Saeed ; Ghofrani, Sedigheh</creator><creatorcontrib>Jafari, Saeed ; Ghofrani, Sedigheh</creatorcontrib><description>Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. Two approaches based on modeling the nonsubsampled Shearlet transform (NSST) coefficients are presented. Two-sided generalized Gamma distribution and normal inverse Gaussian probability density function have been used to model the statistics of NSST coefficients. Bayesian maximum a posteriori estimator is applied to the corrupted NSST coefficients in order to estimate the noise-free NSST coefficients. Finally, experimental results, according to objective and subjective criteria, carried out on both artificially speckled images and the true SAR images, demonstrate that the proposed methods outperform other state of art references via two points of view, speckle noise reduction and image quality preservation.</description><identifier>ISSN: 1931-3195</identifier><identifier>EISSN: 1931-3195</identifier><identifier>DOI: 10.1117/1.JRS.10.015002</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><ispartof>Journal of applied remote sensing, 2016-01, Vol.10 (1), p.015002-015002</ispartof><rights>2016 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033</citedby><cites>FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.JRS.10.015002$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://www.dx.doi.org/10.1117/1.JRS.10.015002$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,24043,27924,27925,55379,55380</link.rule.ids></links><search><creatorcontrib>Jafari, Saeed</creatorcontrib><creatorcontrib>Ghofrani, Sedigheh</creatorcontrib><title>Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling</title><title>Journal of applied remote sensing</title><addtitle>J. Appl. Remote Sens</addtitle><description>Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. Two approaches based on modeling the nonsubsampled Shearlet transform (NSST) coefficients are presented. Two-sided generalized Gamma distribution and normal inverse Gaussian probability density function have been used to model the statistics of NSST coefficients. Bayesian maximum a posteriori estimator is applied to the corrupted NSST coefficients in order to estimate the noise-free NSST coefficients. Finally, experimental results, according to objective and subjective criteria, carried out on both artificially speckled images and the true SAR images, demonstrate that the proposed methods outperform other state of art references via two points of view, speckle noise reduction and image quality preservation.</description><issn>1931-3195</issn><issn>1931-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKZqz-AtN66TuxjVWihqgSiVBytPNaQksSRnQrB15MQDpWAy-7O7s5oNIRcAhsBQDSG0epxM2oRA8HY5IgMQHEIOChxfDCfkjPvd4wJLmU0IJutz6sX2rxbmlo0Jk9zrBpPS5th0V2soZWt_D7xcVkXmNHNK8auwIY2Lq68sa6kbaEZ-hrTt45zTk5MXHi8-OlDsl3cPM1vg_X98m4-WwcpF7IJxFRJjkyiSKWCEHmiMOIZi8IJIKrYSAgNSMMRwyyUWSITwfk0miqjGDDOh2Tc66bOeu_Q6NrlZew-NDDdZaJBt5l0qM-kZTz3DF_nqHd276rWoF7N-i_Qn3l9gHrW93Lmmjwt8OF68fteZ6ZVvvpL-T8jX5A6f3w</recordid><startdate>20160119</startdate><enddate>20160119</enddate><creator>Jafari, Saeed</creator><creator>Ghofrani, Sedigheh</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160119</creationdate><title>Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling</title><author>Jafari, Saeed ; Ghofrani, Sedigheh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Saeed</creatorcontrib><creatorcontrib>Ghofrani, Sedigheh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, Saeed</au><au>Ghofrani, Sedigheh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling</atitle><jtitle>Journal of applied remote sensing</jtitle><addtitle>J. Appl. Remote Sens</addtitle><date>2016-01-19</date><risdate>2016</risdate><volume>10</volume><issue>1</issue><spage>015002</spage><epage>015002</epage><pages>015002-015002</pages><issn>1931-3195</issn><eissn>1931-3195</eissn><abstract>Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. Two approaches based on modeling the nonsubsampled Shearlet transform (NSST) coefficients are presented. Two-sided generalized Gamma distribution and normal inverse Gaussian probability density function have been used to model the statistics of NSST coefficients. Bayesian maximum a posteriori estimator is applied to the corrupted NSST coefficients in order to estimate the noise-free NSST coefficients. Finally, experimental results, according to objective and subjective criteria, carried out on both artificially speckled images and the true SAR images, demonstrate that the proposed methods outperform other state of art references via two points of view, speckle noise reduction and image quality preservation.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><doi>10.1117/1.JRS.10.015002</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-3195
ispartof Journal of applied remote sensing, 2016-01, Vol.10 (1), p.015002-015002
issn 1931-3195
1931-3195
language eng
recordid cdi_crossref_primary_10_1117_1_JRS_10_015002
source SPIE Digital Library Journals
title Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20two%20coefficients%20modeling%20of%20nonsubsampled%20Shearlet%20transform%20for%20despeckling&rft.jtitle=Journal%20of%20applied%20remote%20sensing&rft.au=Jafari,%20Saeed&rft.date=2016-01-19&rft.volume=10&rft.issue=1&rft.spage=015002&rft.epage=015002&rft.pages=015002-015002&rft.issn=1931-3195&rft.eissn=1931-3195&rft_id=info:doi/10.1117/1.JRS.10.015002&rft_dat=%3Ccrossref_spie_%3E10_1117_1_JRS_10_015002%3C/crossref_spie_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-54983e08e5c8916e3b9e73d07621ee9af816f18f3ee6d68db8b5334749f901033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true