Loading…

Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform

Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the sca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied remote sensing 2017-10, Vol.11 (4), p.045002-045002
Main Authors: Peng, Shujuan, Qu, Changwen, Li, Jianwei, Li, Zhi, Deng, Bing
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203
cites cdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203
container_end_page 045002
container_issue 4
container_start_page 045002
container_title Journal of applied remote sensing
container_volume 11
creator Peng, Shujuan
Qu, Changwen
Li, Jianwei
Li, Zhi
Deng, Bing
description Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.
doi_str_mv 10.1117/1.JRS.11.045002
format article
fullrecord <record><control><sourceid>spie_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_JRS_11_045002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_JRS_11_045002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMKZqx9AWjtOmuRYFQpURaBScbW2yaZ1lTiR7R7oiadjmiIhgTjt7OzMaDWEXHM24JwnQz6YLV49HLAoZiw8IT2eCR4InsWnP_A5ubB2y1gs0jTpkY8FrncVGLUHpxpNWzBQo0ND0TpVd2TZGNo2SrtgBRYLat-126BTOYUWjdsZpAYKMNQb1khLhAOHegM6xxq1o53RZz1hVSlNnQFtfW59Sc5KqCxeHWefLKd3y8lDMH--f5yM50Eu4sQF6ShN0zBJEhxhhnkBIV-xnOUxj0UhyigqShZDVIxWwKIoS1LBowxClrA0xpCJPhl2sblprDVYytb4b8275Ex-9Se59P15KLv-vOOmc9hWodw2O6P9f__I3_6SH0WR3KtWzsbfW2c6kGPji6zw5Xb6-94WpfgE4fqQBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</title><source>SPIE Digital Library</source><creator>Peng, Shujuan ; Qu, Changwen ; Li, Jianwei ; Li, Zhi ; Deng, Bing</creator><creatorcontrib>Peng, Shujuan ; Qu, Changwen ; Li, Jianwei ; Li, Zhi ; Deng, Bing</creatorcontrib><description>Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.</description><identifier>ISSN: 1931-3195</identifier><identifier>EISSN: 1931-3195</identifier><identifier>DOI: 10.1117/1.JRS.11.045002</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><ispartof>Journal of applied remote sensing, 2017-10, Vol.11 (4), p.045002-045002</ispartof><rights>2017 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</citedby><cites>FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.JRS.11.045002$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://www.dx.doi.org/10.1117/1.JRS.11.045002$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,24043,27924,27925,55379,55380</link.rule.ids></links><search><creatorcontrib>Peng, Shujuan</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><title>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</title><title>Journal of applied remote sensing</title><addtitle>J. Appl. Remote Sens</addtitle><description>Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.</description><issn>1931-3195</issn><issn>1931-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UEFOwzAQtBBIlMKZqx9AWjtOmuRYFQpURaBScbW2yaZ1lTiR7R7oiadjmiIhgTjt7OzMaDWEXHM24JwnQz6YLV49HLAoZiw8IT2eCR4InsWnP_A5ubB2y1gs0jTpkY8FrncVGLUHpxpNWzBQo0ND0TpVd2TZGNo2SrtgBRYLat-126BTOYUWjdsZpAYKMNQb1khLhAOHegM6xxq1o53RZz1hVSlNnQFtfW59Sc5KqCxeHWefLKd3y8lDMH--f5yM50Eu4sQF6ShN0zBJEhxhhnkBIV-xnOUxj0UhyigqShZDVIxWwKIoS1LBowxClrA0xpCJPhl2sblprDVYytb4b8275Ex-9Se59P15KLv-vOOmc9hWodw2O6P9f__I3_6SH0WR3KtWzsbfW2c6kGPji6zw5Xb6-94WpfgE4fqQBw</recordid><startdate>20171004</startdate><enddate>20171004</enddate><creator>Peng, Shujuan</creator><creator>Qu, Changwen</creator><creator>Li, Jianwei</creator><creator>Li, Zhi</creator><creator>Deng, Bing</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171004</creationdate><title>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</title><author>Peng, Shujuan ; Qu, Changwen ; Li, Jianwei ; Li, Zhi ; Deng, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Shujuan</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Shujuan</au><au>Qu, Changwen</au><au>Li, Jianwei</au><au>Li, Zhi</au><au>Deng, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</atitle><jtitle>Journal of applied remote sensing</jtitle><addtitle>J. Appl. Remote Sens</addtitle><date>2017-10-04</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>045002</spage><epage>045002</epage><pages>045002-045002</pages><issn>1931-3195</issn><eissn>1931-3195</eissn><abstract>Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><doi>10.1117/1.JRS.11.045002</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-3195
ispartof Journal of applied remote sensing, 2017-10, Vol.11 (4), p.045002-045002
issn 1931-3195
1931-3195
language eng
recordid cdi_crossref_primary_10_1117_1_JRS_11_045002
source SPIE Digital Library
title Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-spie_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularization%20parameter%20estimation%20for%20point-based%20synthetic%20aperture%20radar%20image%20feature%20enhancement%20based%20on%20Mellin%20transform&rft.jtitle=Journal%20of%20applied%20remote%20sensing&rft.au=Peng,%20Shujuan&rft.date=2017-10-04&rft.volume=11&rft.issue=4&rft.spage=045002&rft.epage=045002&rft.pages=045002-045002&rft.issn=1931-3195&rft.eissn=1931-3195&rft_id=info:doi/10.1117/1.JRS.11.045002&rft_dat=%3Cspie_cross%3E10_1117_1_JRS_11_045002%3C/spie_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true