Loading…
Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform
Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the sca...
Saved in:
Published in: | Journal of applied remote sensing 2017-10, Vol.11 (4), p.045002-045002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203 |
container_end_page | 045002 |
container_issue | 4 |
container_start_page | 045002 |
container_title | Journal of applied remote sensing |
container_volume | 11 |
creator | Peng, Shujuan Qu, Changwen Li, Jianwei Li, Zhi Deng, Bing |
description | Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness. |
doi_str_mv | 10.1117/1.JRS.11.045002 |
format | article |
fullrecord | <record><control><sourceid>spie_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_JRS_11_045002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_JRS_11_045002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</originalsourceid><addsrcrecordid>eNp9UEFOwzAQtBBIlMKZqx9AWjtOmuRYFQpURaBScbW2yaZ1lTiR7R7oiadjmiIhgTjt7OzMaDWEXHM24JwnQz6YLV49HLAoZiw8IT2eCR4InsWnP_A5ubB2y1gs0jTpkY8FrncVGLUHpxpNWzBQo0ND0TpVd2TZGNo2SrtgBRYLat-126BTOYUWjdsZpAYKMNQb1khLhAOHegM6xxq1o53RZz1hVSlNnQFtfW59Sc5KqCxeHWefLKd3y8lDMH--f5yM50Eu4sQF6ShN0zBJEhxhhnkBIV-xnOUxj0UhyigqShZDVIxWwKIoS1LBowxClrA0xpCJPhl2sblprDVYytb4b8275Ex-9Se59P15KLv-vOOmc9hWodw2O6P9f__I3_6SH0WR3KtWzsbfW2c6kGPji6zw5Xb6-94WpfgE4fqQBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</title><source>SPIE Digital Library</source><creator>Peng, Shujuan ; Qu, Changwen ; Li, Jianwei ; Li, Zhi ; Deng, Bing</creator><creatorcontrib>Peng, Shujuan ; Qu, Changwen ; Li, Jianwei ; Li, Zhi ; Deng, Bing</creatorcontrib><description>Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.</description><identifier>ISSN: 1931-3195</identifier><identifier>EISSN: 1931-3195</identifier><identifier>DOI: 10.1117/1.JRS.11.045002</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><ispartof>Journal of applied remote sensing, 2017-10, Vol.11 (4), p.045002-045002</ispartof><rights>2017 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</citedby><cites>FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.JRS.11.045002$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://www.dx.doi.org/10.1117/1.JRS.11.045002$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,24043,27924,27925,55379,55380</link.rule.ids></links><search><creatorcontrib>Peng, Shujuan</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><title>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</title><title>Journal of applied remote sensing</title><addtitle>J. Appl. Remote Sens</addtitle><description>Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.</description><issn>1931-3195</issn><issn>1931-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UEFOwzAQtBBIlMKZqx9AWjtOmuRYFQpURaBScbW2yaZ1lTiR7R7oiadjmiIhgTjt7OzMaDWEXHM24JwnQz6YLV49HLAoZiw8IT2eCR4InsWnP_A5ubB2y1gs0jTpkY8FrncVGLUHpxpNWzBQo0ND0TpVd2TZGNo2SrtgBRYLat-126BTOYUWjdsZpAYKMNQb1khLhAOHegM6xxq1o53RZz1hVSlNnQFtfW59Sc5KqCxeHWefLKd3y8lDMH--f5yM50Eu4sQF6ShN0zBJEhxhhnkBIV-xnOUxj0UhyigqShZDVIxWwKIoS1LBowxClrA0xpCJPhl2sblprDVYytb4b8275Ex-9Se59P15KLv-vOOmc9hWodw2O6P9f__I3_6SH0WR3KtWzsbfW2c6kGPji6zw5Xb6-94WpfgE4fqQBw</recordid><startdate>20171004</startdate><enddate>20171004</enddate><creator>Peng, Shujuan</creator><creator>Qu, Changwen</creator><creator>Li, Jianwei</creator><creator>Li, Zhi</creator><creator>Deng, Bing</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171004</creationdate><title>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</title><author>Peng, Shujuan ; Qu, Changwen ; Li, Jianwei ; Li, Zhi ; Deng, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Shujuan</creatorcontrib><creatorcontrib>Qu, Changwen</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Shujuan</au><au>Qu, Changwen</au><au>Li, Jianwei</au><au>Li, Zhi</au><au>Deng, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform</atitle><jtitle>Journal of applied remote sensing</jtitle><addtitle>J. Appl. Remote Sens</addtitle><date>2017-10-04</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>045002</spage><epage>045002</epage><pages>045002-045002</pages><issn>1931-3195</issn><eissn>1931-3195</eissn><abstract>Considering the sparseness of scatterers in the scene of a synthetic aperture radar (SAR) image, we propose a modified model for SAR images with enhanced features by automatically choosing variable lk-norm and regularization parameter. The approach is based on a regularized reconstruction of the scattering field, which employs prior information of the region of interest. It leads to an alternating iterative algorithm for the modeling. The method is constructed based on variable lk-norm and regularization parameter. Here, k is a function of the imaged region and it could be estimated during the iteration process to the scattering field. The regularization parameter is changing because it is being determined by k. Moreover, the parameter estimators of the presented model are derived by applying the method of log cumulants-based on Mellin transform. Compared to conventional SAR regularization methods, the proposed method reconstructs images with increased resolution, reduced clutter, and reduced computation cost. We demonstrate the performance of the method on real SAR scenes. The experiment results of measured SAR data prove the effectiveness.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><doi>10.1117/1.JRS.11.045002</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-3195 |
ispartof | Journal of applied remote sensing, 2017-10, Vol.11 (4), p.045002-045002 |
issn | 1931-3195 1931-3195 |
language | eng |
recordid | cdi_crossref_primary_10_1117_1_JRS_11_045002 |
source | SPIE Digital Library |
title | Regularization parameter estimation for point-based synthetic aperture radar image feature enhancement based on Mellin transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-spie_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularization%20parameter%20estimation%20for%20point-based%20synthetic%20aperture%20radar%20image%20feature%20enhancement%20based%20on%20Mellin%20transform&rft.jtitle=Journal%20of%20applied%20remote%20sensing&rft.au=Peng,%20Shujuan&rft.date=2017-10-04&rft.volume=11&rft.issue=4&rft.spage=045002&rft.epage=045002&rft.pages=045002-045002&rft.issn=1931-3195&rft.eissn=1931-3195&rft_id=info:doi/10.1117/1.JRS.11.045002&rft_dat=%3Cspie_cross%3E10_1117_1_JRS_11_045002%3C/spie_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-868882777e6e9ecda21b0c0c5153d3f44df05a4d6ba0449783149a207085e203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |