Loading…

Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied remote sensing 2017-11, Vol.11 (4), p.046015-046015
Main Authors: Iabchoon, Sanwit, Wongsai, Sangdao, Chankon, Kanoksuk
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93
cites cdi_FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93
container_end_page 046015
container_issue 4
container_start_page 046015
container_title Journal of applied remote sensing
container_volume 11
creator Iabchoon, Sanwit
Wongsai, Sangdao
Chankon, Kanoksuk
description Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.
doi_str_mv 10.1117/1.JRS.11.046015
format article
fullrecord <record><control><sourceid>crossref_spie_</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_JRS_11_046015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_JRS_11_046015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqVw5uofQFo7Tpr4WJVnVQTiUY7Wxl4XV6GJ7ISq_HpSUiQkECePPd-s1hMEp4wOGGPpkA2mD4-tHNB4RFmyF_SY4CzkTCT7P_RhcOT9ktKEZ1naC_AWqsquFqRxOayIfavQvduy8cQ3zoBC0vitXeZLVHWYg0fdUrBAAisoNt56srb1K3kpXaHnFtchJx5qLApbY0e6zXFwYKDweLI7-8Hz5cXT5Dqc3V3dTMazUPEkrUMDgptUGDA8AhwxI4AjUBGnXGOkc0ZTZbgZGdBKxylCnvFMxyJCmiWRErwfDLu5ypXeOzSycu0KbiMZlduWJJNtS62UXUtt4qxL-MqiXJaNa3_l_8Hnf-E7KJYftpLT8fetC309jl1tVYH355e__Uob_gmocYd3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery</title><source>SPIE Digital Library Journals</source><creator>Iabchoon, Sanwit ; Wongsai, Sangdao ; Chankon, Kanoksuk</creator><creatorcontrib>Iabchoon, Sanwit ; Wongsai, Sangdao ; Chankon, Kanoksuk</creatorcontrib><description>Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.</description><identifier>ISSN: 1931-3195</identifier><identifier>EISSN: 1931-3195</identifier><identifier>DOI: 10.1117/1.JRS.11.046015</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><ispartof>Journal of applied remote sensing, 2017-11, Vol.11 (4), p.046015-046015</ispartof><rights>2017 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93</citedby><cites>FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.JRS.11.046015$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://www.dx.doi.org/10.1117/1.JRS.11.046015$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,780,784,24043,27924,27925,55379,55380</link.rule.ids></links><search><creatorcontrib>Iabchoon, Sanwit</creatorcontrib><creatorcontrib>Wongsai, Sangdao</creatorcontrib><creatorcontrib>Chankon, Kanoksuk</creatorcontrib><title>Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery</title><title>Journal of applied remote sensing</title><addtitle>J. Appl. Remote Sens</addtitle><description>Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.</description><issn>1931-3195</issn><issn>1931-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqVw5uofQFo7Tpr4WJVnVQTiUY7Wxl4XV6GJ7ISq_HpSUiQkECePPd-s1hMEp4wOGGPpkA2mD4-tHNB4RFmyF_SY4CzkTCT7P_RhcOT9ktKEZ1naC_AWqsquFqRxOayIfavQvduy8cQ3zoBC0vitXeZLVHWYg0fdUrBAAisoNt56srb1K3kpXaHnFtchJx5qLApbY0e6zXFwYKDweLI7-8Hz5cXT5Dqc3V3dTMazUPEkrUMDgptUGDA8AhwxI4AjUBGnXGOkc0ZTZbgZGdBKxylCnvFMxyJCmiWRErwfDLu5ypXeOzSycu0KbiMZlduWJJNtS62UXUtt4qxL-MqiXJaNa3_l_8Hnf-E7KJYftpLT8fetC309jl1tVYH355e__Uob_gmocYd3</recordid><startdate>20171130</startdate><enddate>20171130</enddate><creator>Iabchoon, Sanwit</creator><creator>Wongsai, Sangdao</creator><creator>Chankon, Kanoksuk</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171130</creationdate><title>Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery</title><author>Iabchoon, Sanwit ; Wongsai, Sangdao ; Chankon, Kanoksuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iabchoon, Sanwit</creatorcontrib><creatorcontrib>Wongsai, Sangdao</creatorcontrib><creatorcontrib>Chankon, Kanoksuk</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iabchoon, Sanwit</au><au>Wongsai, Sangdao</au><au>Chankon, Kanoksuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery</atitle><jtitle>Journal of applied remote sensing</jtitle><addtitle>J. Appl. Remote Sens</addtitle><date>2017-11-30</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>046015</spage><epage>046015</epage><pages>046015-046015</pages><issn>1931-3195</issn><eissn>1931-3195</eissn><abstract>Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><doi>10.1117/1.JRS.11.046015</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-3195
ispartof Journal of applied remote sensing, 2017-11, Vol.11 (4), p.046015-046015
issn 1931-3195
1931-3195
language eng
recordid cdi_crossref_primary_10_1117_1_JRS_11_046015
source SPIE Digital Library Journals
title Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20urban%20impervious%20surface%20using%20object-based%20image%20analysis%20with%20WorldView-3%20satellite%20imagery&rft.jtitle=Journal%20of%20applied%20remote%20sensing&rft.au=Iabchoon,%20Sanwit&rft.date=2017-11-30&rft.volume=11&rft.issue=4&rft.spage=046015&rft.epage=046015&rft.pages=046015-046015&rft.issn=1931-3195&rft.eissn=1931-3195&rft_id=info:doi/10.1117/1.JRS.11.046015&rft_dat=%3Ccrossref_spie_%3E10_1117_1_JRS_11_046015%3C/crossref_spie_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-fa93f79faf32ae61f9a3ea09473de2db107cf3f6fadcd47eab838d492e0852c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true