Loading…

Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan

The scope of our work is to compare Sentinel-2 and unmanned aerial vehicles (UAV) imagery from Western Tian Shan for monitoring applications in walnut fruit forests. Because acquiring field data on walnut fruit forests is difficult due to access limitations in the Tian Shan, remote sensing offers a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied remote sensing 2023-04, Vol.17 (2), p.022204-022204
Main Authors: Isaev, Erkin, Kulikov, Maksim, Shibkov, Evgenii, Sidle, Roy C.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c16728767f3652abd79b9131403fe9c8b8aef851fc3f61042e1c457c5546727f3
cites
container_end_page 022204
container_issue 2
container_start_page 022204
container_title Journal of applied remote sensing
container_volume 17
creator Isaev, Erkin
Kulikov, Maksim
Shibkov, Evgenii
Sidle, Roy C.
description The scope of our work is to compare Sentinel-2 and unmanned aerial vehicles (UAV) imagery from Western Tian Shan for monitoring applications in walnut fruit forests. Because acquiring field data on walnut fruit forests is difficult due to access limitations in the Tian Shan, remote sensing offers a unique opportunity to increase spatial and temporal coverage of ecological parameters. Sentinel-2 satellites launched in 2015 have been providing images at spatial resolutions of 10 to 20 m; however, difficulties remain as information retrieved from Sentinel pixels result from a mixture of objects that affect reflectance signals. We used submeter multispectral UAV images to assess the sensitivity of Sentinel-2 normalized difference vegetation index (NDVI) to subpixel vegetation. Results showed that Sentinel-2 data overestimates NDVI in regions with open terrain and grass, and underestimates NDVI in areas with trees. By implementing a bias correction method, the accuracy of the Sentinel-2 derived NDVI increased; R2 values increased from 0.59 to 0.88 (p value  
doi_str_mv 10.1117/1.JRS.17.022204
format article
fullrecord <record><control><sourceid>spie_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_JRS_17_022204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_JRS_17_022204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c16728767f3652abd79b9131403fe9c8b8aef851fc3f61042e1c457c5546727f3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqVw5roP0LTZ_Dk5AuK_EhIt58h1162rxK5sh6o8CY-Lq3LgwmlGq_lWuxNF15iMEZFNcPzyPhsjGydpmib5STTAOsM4w7o4_ePPowvnNklSZFXFBtH3reIOhLGWhFdGg5EwI-2VpjZOYaf8Gnrdca1pCZys4i180lqJlqDrW6_cNoA2TJfcc5DGQu8IlIbOaOWNVXoFO97q3oO0vfKHCDl_SOyCktUwV6RhtuZ6BK97u9p_Oc_1ZXQmeevo6leH0cfD_fzuKZ6-PT7f3UxjEb7xscCSpRUrmczKIuWLJasXNWaYJ5mkWlSLipOsCpQikyUmeUoo8oKJosgDGKhhNDnuFdY4Z0k2W6s6bvcNJs2h2AabUGwTzLHYQIyOhNsqajamtzoc-G_8B9QEfEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan</title><source>SPIE Digital Library</source><creator>Isaev, Erkin ; Kulikov, Maksim ; Shibkov, Evgenii ; Sidle, Roy C.</creator><creatorcontrib>Isaev, Erkin ; Kulikov, Maksim ; Shibkov, Evgenii ; Sidle, Roy C.</creatorcontrib><description>The scope of our work is to compare Sentinel-2 and unmanned aerial vehicles (UAV) imagery from Western Tian Shan for monitoring applications in walnut fruit forests. Because acquiring field data on walnut fruit forests is difficult due to access limitations in the Tian Shan, remote sensing offers a unique opportunity to increase spatial and temporal coverage of ecological parameters. Sentinel-2 satellites launched in 2015 have been providing images at spatial resolutions of 10 to 20 m; however, difficulties remain as information retrieved from Sentinel pixels result from a mixture of objects that affect reflectance signals. We used submeter multispectral UAV images to assess the sensitivity of Sentinel-2 normalized difference vegetation index (NDVI) to subpixel vegetation. Results showed that Sentinel-2 data overestimates NDVI in regions with open terrain and grass, and underestimates NDVI in areas with trees. By implementing a bias correction method, the accuracy of the Sentinel-2 derived NDVI increased; R2 values increased from 0.59 to 0.88 (p value  &lt;  0.001). We also showed that drought index derived from Sentinel-2 vegetation condition index (VCI) is well correlated with the ground-based standard precipitation index (SPI). Using this bias correction method, on average the correlation increased by 3% between VCI and SPI.</description><identifier>ISSN: 1931-3195</identifier><identifier>EISSN: 1931-3195</identifier><identifier>DOI: 10.1117/1.JRS.17.022204</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><ispartof>Journal of applied remote sensing, 2023-04, Vol.17 (2), p.022204-022204</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c16728767f3652abd79b9131403fe9c8b8aef851fc3f61042e1c457c5546727f3</citedby><orcidid>0000-0001-8174-6055 ; 0000-0002-5004-4154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.JRS.17.022204$$EPDF$$P50$$Gspie$$Hfree_for_read</linktopdf><linktohtml>$$Uhttp://www.dx.doi.org/10.1117/1.JRS.17.022204$$EHTML$$P50$$Gspie$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,24041,27922,27923,55377,55378</link.rule.ids></links><search><creatorcontrib>Isaev, Erkin</creatorcontrib><creatorcontrib>Kulikov, Maksim</creatorcontrib><creatorcontrib>Shibkov, Evgenii</creatorcontrib><creatorcontrib>Sidle, Roy C.</creatorcontrib><title>Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan</title><title>Journal of applied remote sensing</title><addtitle>J. Appl. Remote Sens</addtitle><description>The scope of our work is to compare Sentinel-2 and unmanned aerial vehicles (UAV) imagery from Western Tian Shan for monitoring applications in walnut fruit forests. Because acquiring field data on walnut fruit forests is difficult due to access limitations in the Tian Shan, remote sensing offers a unique opportunity to increase spatial and temporal coverage of ecological parameters. Sentinel-2 satellites launched in 2015 have been providing images at spatial resolutions of 10 to 20 m; however, difficulties remain as information retrieved from Sentinel pixels result from a mixture of objects that affect reflectance signals. We used submeter multispectral UAV images to assess the sensitivity of Sentinel-2 normalized difference vegetation index (NDVI) to subpixel vegetation. Results showed that Sentinel-2 data overestimates NDVI in regions with open terrain and grass, and underestimates NDVI in areas with trees. By implementing a bias correction method, the accuracy of the Sentinel-2 derived NDVI increased; R2 values increased from 0.59 to 0.88 (p value  &lt;  0.001). We also showed that drought index derived from Sentinel-2 vegetation condition index (VCI) is well correlated with the ground-based standard precipitation index (SPI). Using this bias correction method, on average the correlation increased by 3% between VCI and SPI.</description><issn>1931-3195</issn><issn>1931-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhCMEEqVw5roP0LTZ_Dk5AuK_EhIt58h1162rxK5sh6o8CY-Lq3LgwmlGq_lWuxNF15iMEZFNcPzyPhsjGydpmib5STTAOsM4w7o4_ePPowvnNklSZFXFBtH3reIOhLGWhFdGg5EwI-2VpjZOYaf8Gnrdca1pCZys4i180lqJlqDrW6_cNoA2TJfcc5DGQu8IlIbOaOWNVXoFO97q3oO0vfKHCDl_SOyCktUwV6RhtuZ6BK97u9p_Oc_1ZXQmeevo6leH0cfD_fzuKZ6-PT7f3UxjEb7xscCSpRUrmczKIuWLJasXNWaYJ5mkWlSLipOsCpQikyUmeUoo8oKJosgDGKhhNDnuFdY4Z0k2W6s6bvcNJs2h2AabUGwTzLHYQIyOhNsqajamtzoc-G_8B9QEfEY</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Isaev, Erkin</creator><creator>Kulikov, Maksim</creator><creator>Shibkov, Evgenii</creator><creator>Sidle, Roy C.</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8174-6055</orcidid><orcidid>https://orcid.org/0000-0002-5004-4154</orcidid></search><sort><creationdate>20230401</creationdate><title>Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan</title><author>Isaev, Erkin ; Kulikov, Maksim ; Shibkov, Evgenii ; Sidle, Roy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c16728767f3652abd79b9131403fe9c8b8aef851fc3f61042e1c457c5546727f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaev, Erkin</creatorcontrib><creatorcontrib>Kulikov, Maksim</creatorcontrib><creatorcontrib>Shibkov, Evgenii</creatorcontrib><creatorcontrib>Sidle, Roy C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaev, Erkin</au><au>Kulikov, Maksim</au><au>Shibkov, Evgenii</au><au>Sidle, Roy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan</atitle><jtitle>Journal of applied remote sensing</jtitle><addtitle>J. Appl. Remote Sens</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>022204</spage><epage>022204</epage><pages>022204-022204</pages><issn>1931-3195</issn><eissn>1931-3195</eissn><abstract>The scope of our work is to compare Sentinel-2 and unmanned aerial vehicles (UAV) imagery from Western Tian Shan for monitoring applications in walnut fruit forests. Because acquiring field data on walnut fruit forests is difficult due to access limitations in the Tian Shan, remote sensing offers a unique opportunity to increase spatial and temporal coverage of ecological parameters. Sentinel-2 satellites launched in 2015 have been providing images at spatial resolutions of 10 to 20 m; however, difficulties remain as information retrieved from Sentinel pixels result from a mixture of objects that affect reflectance signals. We used submeter multispectral UAV images to assess the sensitivity of Sentinel-2 normalized difference vegetation index (NDVI) to subpixel vegetation. Results showed that Sentinel-2 data overestimates NDVI in regions with open terrain and grass, and underestimates NDVI in areas with trees. By implementing a bias correction method, the accuracy of the Sentinel-2 derived NDVI increased; R2 values increased from 0.59 to 0.88 (p value  &lt;  0.001). We also showed that drought index derived from Sentinel-2 vegetation condition index (VCI) is well correlated with the ground-based standard precipitation index (SPI). Using this bias correction method, on average the correlation increased by 3% between VCI and SPI.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><doi>10.1117/1.JRS.17.022204</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8174-6055</orcidid><orcidid>https://orcid.org/0000-0002-5004-4154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3195
ispartof Journal of applied remote sensing, 2023-04, Vol.17 (2), p.022204-022204
issn 1931-3195
1931-3195
language eng
recordid cdi_crossref_primary_10_1117_1_JRS_17_022204
source SPIE Digital Library
title Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut fruit forest in western Tien Shan, Kyrgyzstan
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-spie_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias%20correction%20of%20Sentinel-2%20with%20unmanned%20aerial%20vehicle%20multispectral%20data%20for%20use%20in%20monitoring%20walnut%20fruit%20forest%20in%20western%20Tien%20Shan,%20Kyrgyzstan&rft.jtitle=Journal%20of%20applied%20remote%20sensing&rft.au=Isaev,%20Erkin&rft.date=2023-04-01&rft.volume=17&rft.issue=2&rft.spage=022204&rft.epage=022204&rft.pages=022204-022204&rft.issn=1931-3195&rft.eissn=1931-3195&rft_id=info:doi/10.1117/1.JRS.17.022204&rft_dat=%3Cspie_cross%3E10_1117_1_JRS_17_022204%3C/spie_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c16728767f3652abd79b9131403fe9c8b8aef851fc3f61042e1c457c5546727f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true