Loading…
X-ray scatter correction algorithm for cone beam CT imaging
Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruct...
Saved in:
Published in: | Medical physics (Lancaster) 2004-05, Vol.31 (5), p.1195-1202 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3 |
container_end_page | 1202 |
container_issue | 5 |
container_start_page | 1195 |
container_title | Medical physics (Lancaster) |
container_volume | 31 |
creator | Ning, Ruola Tang, Xiangyang Conover, David |
description | Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task. |
doi_str_mv | 10.1118/1.1711475 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1118_1_1711475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72010448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUQAdRbK0u_AHJSlBIvfPKZHAlxRdUdFHB3TCZzNRIHnUmVfr3piSgm7q6i3s493IQOsUwxRinV3iKBcZM8D00JkzQmBGQ-2gMIFlMGPAROgrhAwASyuEQjTDHElOQY3T9Fnu9iYLRbWt9ZBrvrWmLpo50uWx80b5XkWu2i9pGmdVVNFtERaWXRb08RgdOl8GeDHOCXu9uF7OHeP58_zi7mceGcc5ji4XkJKWEkcRJ6iQDqnmep0RmkhkCwvKUOWYAstQ4nhhKqTGCJokAShydoPPeu_LN59qGVlVFMLYsdW2bdVCCAAbG0g686EHjmxC8dWrlu1_9RmFQ21IKq6FUx54N0nVW2fyXHNJ0QNwD30VpN7tN6ullEF72fDBFq7cJ_72-E_5q_B_5Knf0B9tDieg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72010448</pqid></control><display><type>article</type><title>X-ray scatter correction algorithm for cone beam CT imaging</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ning, Ruola ; Tang, Xiangyang ; Conover, David</creator><creatorcontrib>Ning, Ruola ; Tang, Xiangyang ; Conover, David</creatorcontrib><description>Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1711475</identifier><identifier>PMID: 15191309</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; antiscatter grid ; Computed radiography ; Computed tomography ; computerised tomography ; Cone beam computed tomography ; cone beam CT ; cone beam reconstruction ; flat panel detector ; Humans ; Image analysis ; Image quality ; image reconstruction ; image scanners ; image sensors ; image sequences ; Medical image contrast ; Medical image noise ; medical image processing ; Medical image reconstruction ; Medical imaging ; Medical X‐ray imaging ; phantoms ; Phantoms, Imaging ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography, Thoracic - instrumentation ; Radiography, Thoracic - methods ; Reproducibility of Results ; scatter ; scatter correction ; Scattering, Radiation ; Sensitivity and Specificity ; Tomography, Spiral Computed - methods ; X-Rays ; X‐ray imaging ; X‐ray scattering</subject><ispartof>Medical physics (Lancaster), 2004-05, Vol.31 (5), p.1195-1202</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</citedby><cites>FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15191309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Ruola</creatorcontrib><creatorcontrib>Tang, Xiangyang</creatorcontrib><creatorcontrib>Conover, David</creatorcontrib><title>X-ray scatter correction algorithm for cone beam CT imaging</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.</description><subject>Algorithms</subject><subject>antiscatter grid</subject><subject>Computed radiography</subject><subject>Computed tomography</subject><subject>computerised tomography</subject><subject>Cone beam computed tomography</subject><subject>cone beam CT</subject><subject>cone beam reconstruction</subject><subject>flat panel detector</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image quality</subject><subject>image reconstruction</subject><subject>image scanners</subject><subject>image sensors</subject><subject>image sequences</subject><subject>Medical image contrast</subject><subject>Medical image noise</subject><subject>medical image processing</subject><subject>Medical image reconstruction</subject><subject>Medical imaging</subject><subject>Medical X‐ray imaging</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography, Thoracic - instrumentation</subject><subject>Radiography, Thoracic - methods</subject><subject>Reproducibility of Results</subject><subject>scatter</subject><subject>scatter correction</subject><subject>Scattering, Radiation</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, Spiral Computed - methods</subject><subject>X-Rays</subject><subject>X‐ray imaging</subject><subject>X‐ray scattering</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKw0AUQAdRbK0u_AHJSlBIvfPKZHAlxRdUdFHB3TCZzNRIHnUmVfr3piSgm7q6i3s493IQOsUwxRinV3iKBcZM8D00JkzQmBGQ-2gMIFlMGPAROgrhAwASyuEQjTDHElOQY3T9Fnu9iYLRbWt9ZBrvrWmLpo50uWx80b5XkWu2i9pGmdVVNFtERaWXRb08RgdOl8GeDHOCXu9uF7OHeP58_zi7mceGcc5ji4XkJKWEkcRJ6iQDqnmep0RmkhkCwvKUOWYAstQ4nhhKqTGCJokAShydoPPeu_LN59qGVlVFMLYsdW2bdVCCAAbG0g686EHjmxC8dWrlu1_9RmFQ21IKq6FUx54N0nVW2fyXHNJ0QNwD30VpN7tN6ullEF72fDBFq7cJ_72-E_5q_B_5Knf0B9tDieg</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Ning, Ruola</creator><creator>Tang, Xiangyang</creator><creator>Conover, David</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>X-ray scatter correction algorithm for cone beam CT imaging</title><author>Ning, Ruola ; Tang, Xiangyang ; Conover, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>antiscatter grid</topic><topic>Computed radiography</topic><topic>Computed tomography</topic><topic>computerised tomography</topic><topic>Cone beam computed tomography</topic><topic>cone beam CT</topic><topic>cone beam reconstruction</topic><topic>flat panel detector</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image quality</topic><topic>image reconstruction</topic><topic>image scanners</topic><topic>image sensors</topic><topic>image sequences</topic><topic>Medical image contrast</topic><topic>Medical image noise</topic><topic>medical image processing</topic><topic>Medical image reconstruction</topic><topic>Medical imaging</topic><topic>Medical X‐ray imaging</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography, Thoracic - instrumentation</topic><topic>Radiography, Thoracic - methods</topic><topic>Reproducibility of Results</topic><topic>scatter</topic><topic>scatter correction</topic><topic>Scattering, Radiation</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, Spiral Computed - methods</topic><topic>X-Rays</topic><topic>X‐ray imaging</topic><topic>X‐ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Ruola</creatorcontrib><creatorcontrib>Tang, Xiangyang</creatorcontrib><creatorcontrib>Conover, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Ruola</au><au>Tang, Xiangyang</au><au>Conover, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray scatter correction algorithm for cone beam CT imaging</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-05</date><risdate>2004</risdate><volume>31</volume><issue>5</issue><spage>1195</spage><epage>1202</epage><pages>1195-1202</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>15191309</pmid><doi>10.1118/1.1711475</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2004-05, Vol.31 (5), p.1195-1202 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_crossref_primary_10_1118_1_1711475 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms antiscatter grid Computed radiography Computed tomography computerised tomography Cone beam computed tomography cone beam CT cone beam reconstruction flat panel detector Humans Image analysis Image quality image reconstruction image scanners image sensors image sequences Medical image contrast Medical image noise medical image processing Medical image reconstruction Medical imaging Medical X‐ray imaging phantoms Phantoms, Imaging Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Thoracic - instrumentation Radiography, Thoracic - methods Reproducibility of Results scatter scatter correction Scattering, Radiation Sensitivity and Specificity Tomography, Spiral Computed - methods X-Rays X‐ray imaging X‐ray scattering |
title | X-ray scatter correction algorithm for cone beam CT imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20scatter%20correction%20algorithm%20for%20cone%20beam%20CT%20imaging&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Ning,%20Ruola&rft.date=2004-05&rft.volume=31&rft.issue=5&rft.spage=1195&rft.epage=1202&rft.pages=1195-1202&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1711475&rft_dat=%3Cproquest_cross%3E72010448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72010448&rft_id=info:pmid/15191309&rfr_iscdi=true |