Loading…

X-ray scatter correction algorithm for cone beam CT imaging

Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruct...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2004-05, Vol.31 (5), p.1195-1202
Main Authors: Ning, Ruola, Tang, Xiangyang, Conover, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3
cites cdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3
container_end_page 1202
container_issue 5
container_start_page 1195
container_title Medical physics (Lancaster)
container_volume 31
creator Ning, Ruola
Tang, Xiangyang
Conover, David
description Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.
doi_str_mv 10.1118/1.1711475
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1118_1_1711475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72010448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUQAdRbK0u_AHJSlBIvfPKZHAlxRdUdFHB3TCZzNRIHnUmVfr3piSgm7q6i3s493IQOsUwxRinV3iKBcZM8D00JkzQmBGQ-2gMIFlMGPAROgrhAwASyuEQjTDHElOQY3T9Fnu9iYLRbWt9ZBrvrWmLpo50uWx80b5XkWu2i9pGmdVVNFtERaWXRb08RgdOl8GeDHOCXu9uF7OHeP58_zi7mceGcc5ji4XkJKWEkcRJ6iQDqnmep0RmkhkCwvKUOWYAstQ4nhhKqTGCJokAShydoPPeu_LN59qGVlVFMLYsdW2bdVCCAAbG0g686EHjmxC8dWrlu1_9RmFQ21IKq6FUx54N0nVW2fyXHNJ0QNwD30VpN7tN6ullEF72fDBFq7cJ_72-E_5q_B_5Knf0B9tDieg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72010448</pqid></control><display><type>article</type><title>X-ray scatter correction algorithm for cone beam CT imaging</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ning, Ruola ; Tang, Xiangyang ; Conover, David</creator><creatorcontrib>Ning, Ruola ; Tang, Xiangyang ; Conover, David</creatorcontrib><description>Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1711475</identifier><identifier>PMID: 15191309</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; antiscatter grid ; Computed radiography ; Computed tomography ; computerised tomography ; Cone beam computed tomography ; cone beam CT ; cone beam reconstruction ; flat panel detector ; Humans ; Image analysis ; Image quality ; image reconstruction ; image scanners ; image sensors ; image sequences ; Medical image contrast ; Medical image noise ; medical image processing ; Medical image reconstruction ; Medical imaging ; Medical X‐ray imaging ; phantoms ; Phantoms, Imaging ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography, Thoracic - instrumentation ; Radiography, Thoracic - methods ; Reproducibility of Results ; scatter ; scatter correction ; Scattering, Radiation ; Sensitivity and Specificity ; Tomography, Spiral Computed - methods ; X-Rays ; X‐ray imaging ; X‐ray scattering</subject><ispartof>Medical physics (Lancaster), 2004-05, Vol.31 (5), p.1195-1202</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</citedby><cites>FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15191309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Ruola</creatorcontrib><creatorcontrib>Tang, Xiangyang</creatorcontrib><creatorcontrib>Conover, David</creatorcontrib><title>X-ray scatter correction algorithm for cone beam CT imaging</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.</description><subject>Algorithms</subject><subject>antiscatter grid</subject><subject>Computed radiography</subject><subject>Computed tomography</subject><subject>computerised tomography</subject><subject>Cone beam computed tomography</subject><subject>cone beam CT</subject><subject>cone beam reconstruction</subject><subject>flat panel detector</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image quality</subject><subject>image reconstruction</subject><subject>image scanners</subject><subject>image sensors</subject><subject>image sequences</subject><subject>Medical image contrast</subject><subject>Medical image noise</subject><subject>medical image processing</subject><subject>Medical image reconstruction</subject><subject>Medical imaging</subject><subject>Medical X‐ray imaging</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography, Thoracic - instrumentation</subject><subject>Radiography, Thoracic - methods</subject><subject>Reproducibility of Results</subject><subject>scatter</subject><subject>scatter correction</subject><subject>Scattering, Radiation</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, Spiral Computed - methods</subject><subject>X-Rays</subject><subject>X‐ray imaging</subject><subject>X‐ray scattering</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKw0AUQAdRbK0u_AHJSlBIvfPKZHAlxRdUdFHB3TCZzNRIHnUmVfr3piSgm7q6i3s493IQOsUwxRinV3iKBcZM8D00JkzQmBGQ-2gMIFlMGPAROgrhAwASyuEQjTDHElOQY3T9Fnu9iYLRbWt9ZBrvrWmLpo50uWx80b5XkWu2i9pGmdVVNFtERaWXRb08RgdOl8GeDHOCXu9uF7OHeP58_zi7mceGcc5ji4XkJKWEkcRJ6iQDqnmep0RmkhkCwvKUOWYAstQ4nhhKqTGCJokAShydoPPeu_LN59qGVlVFMLYsdW2bdVCCAAbG0g686EHjmxC8dWrlu1_9RmFQ21IKq6FUx54N0nVW2fyXHNJ0QNwD30VpN7tN6ullEF72fDBFq7cJ_72-E_5q_B_5Knf0B9tDieg</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Ning, Ruola</creator><creator>Tang, Xiangyang</creator><creator>Conover, David</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200405</creationdate><title>X-ray scatter correction algorithm for cone beam CT imaging</title><author>Ning, Ruola ; Tang, Xiangyang ; Conover, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>antiscatter grid</topic><topic>Computed radiography</topic><topic>Computed tomography</topic><topic>computerised tomography</topic><topic>Cone beam computed tomography</topic><topic>cone beam CT</topic><topic>cone beam reconstruction</topic><topic>flat panel detector</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image quality</topic><topic>image reconstruction</topic><topic>image scanners</topic><topic>image sensors</topic><topic>image sequences</topic><topic>Medical image contrast</topic><topic>Medical image noise</topic><topic>medical image processing</topic><topic>Medical image reconstruction</topic><topic>Medical imaging</topic><topic>Medical X‐ray imaging</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography, Thoracic - instrumentation</topic><topic>Radiography, Thoracic - methods</topic><topic>Reproducibility of Results</topic><topic>scatter</topic><topic>scatter correction</topic><topic>Scattering, Radiation</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, Spiral Computed - methods</topic><topic>X-Rays</topic><topic>X‐ray imaging</topic><topic>X‐ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Ruola</creatorcontrib><creatorcontrib>Tang, Xiangyang</creatorcontrib><creatorcontrib>Conover, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Ruola</au><au>Tang, Xiangyang</au><au>Conover, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray scatter correction algorithm for cone beam CT imaging</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-05</date><risdate>2004</risdate><volume>31</volume><issue>5</issue><spage>1195</spage><epage>1202</epage><pages>1195-1202</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Developing and optimizing an x-ray scatter control and reduction technique is one of the major challenges for cone beam computed tomography (CBCT) because CBCT will be much less immune to scatter than fan-beam CT. X-ray scatter reduces image contrast, increases image noise and introduces reconstruction error into CBCT. To reduce scatter interference, a practical algorithm that is based upon the beam stop array technique and image sequence processing has been developed on a flat panel detector-based CBCT prototype scanner. This paper presents a beam stop array-based scatter correction algorithm and the evaluation results through phantom studies. The results indicate that the beam stop array-based scatter correction algorithm is practical and effective to reduce and correct x-ray scatter for a CBCT imaging task.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>15191309</pmid><doi>10.1118/1.1711475</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2004-05, Vol.31 (5), p.1195-1202
issn 0094-2405
2473-4209
language eng
recordid cdi_crossref_primary_10_1118_1_1711475
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
antiscatter grid
Computed radiography
Computed tomography
computerised tomography
Cone beam computed tomography
cone beam CT
cone beam reconstruction
flat panel detector
Humans
Image analysis
Image quality
image reconstruction
image scanners
image sensors
image sequences
Medical image contrast
Medical image noise
medical image processing
Medical image reconstruction
Medical imaging
Medical X‐ray imaging
phantoms
Phantoms, Imaging
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography, Thoracic - instrumentation
Radiography, Thoracic - methods
Reproducibility of Results
scatter
scatter correction
Scattering, Radiation
Sensitivity and Specificity
Tomography, Spiral Computed - methods
X-Rays
X‐ray imaging
X‐ray scattering
title X-ray scatter correction algorithm for cone beam CT imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20scatter%20correction%20algorithm%20for%20cone%20beam%20CT%20imaging&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Ning,%20Ruola&rft.date=2004-05&rft.volume=31&rft.issue=5&rft.spage=1195&rft.epage=1202&rft.pages=1195-1202&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1711475&rft_dat=%3Cproquest_cross%3E72010448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4555-e17952832426f93f9403a5dd829b94c207e584f4c00b8cf56c333cc73667032f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72010448&rft_id=info:pmid/15191309&rfr_iscdi=true