Loading…

Analytical solution for photonic band-gap crystals using Drude conductivity

An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are tran...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physics 2004-08, Vol.72 (8), p.1051-1054
Main Authors: Schulkin, Brian, Sztancsik, Laszlo, Federici, John F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553
cites cdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553
container_end_page 1054
container_issue 8
container_start_page 1051
container_title American journal of physics
container_volume 72
creator Schulkin, Brian
Sztancsik, Laszlo
Federici, John F.
description An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.
doi_str_mv 10.1119/1.1758223
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_1758223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>775199951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcI7hSm5jKZJstSr1hwo-uQyaWmjJMxyRTm7Z3SogvB1eFwPn44PwCXGM0wxuIWz_CccULoEZhgUdKCCCSOwQQhRArBEDsFZyltxlVgjibgZdGqZsheqwam0PTZhxa6EGH3EXJovYa1ak2xVh3UcUhZNQn2ybdreBd7Y6EOrel19lufh3Nw4sa7vTjMKXh_uH9bPhWr18fn5WJVaErKXNSGC4y5QIxxro0hRAvKrCotR7WqKOXIleOFMmoNdq5m1lFtCamVEJoxOgVX-9wuhq_epiw3oY_jH0kSXFVCzHE1ous90jGkFK2TXfSfKg4SI7mrSmJ5qGq0N3ubtM9qV8EP3ob4C2Vn3H_4b_I3VjR31A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216699716</pqid></control><display><type>article</type><title>Analytical solution for photonic band-gap crystals using Drude conductivity</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Schulkin, Brian ; Sztancsik, Laszlo ; Federici, John F.</creator><creatorcontrib>Schulkin, Brian ; Sztancsik, Laszlo ; Federici, John F.</creatorcontrib><description>An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.1758223</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Band gap ; Mathematical analysis ; Physics ; Semiconductors ; Thermodynamics</subject><ispartof>American journal of physics, 2004-08, Vol.72 (8), p.1051-1054</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</citedby><cites>FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Schulkin, Brian</creatorcontrib><creatorcontrib>Sztancsik, Laszlo</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><title>Analytical solution for photonic band-gap crystals using Drude conductivity</title><title>American journal of physics</title><description>An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.</description><subject>Band gap</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Thermodynamics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcI7hSm5jKZJstSr1hwo-uQyaWmjJMxyRTm7Z3SogvB1eFwPn44PwCXGM0wxuIWz_CccULoEZhgUdKCCCSOwQQhRArBEDsFZyltxlVgjibgZdGqZsheqwam0PTZhxa6EGH3EXJovYa1ak2xVh3UcUhZNQn2ybdreBd7Y6EOrel19lufh3Nw4sa7vTjMKXh_uH9bPhWr18fn5WJVaErKXNSGC4y5QIxxro0hRAvKrCotR7WqKOXIleOFMmoNdq5m1lFtCamVEJoxOgVX-9wuhq_epiw3oY_jH0kSXFVCzHE1ous90jGkFK2TXfSfKg4SI7mrSmJ5qGq0N3ubtM9qV8EP3ob4C2Vn3H_4b_I3VjR31A</recordid><startdate>200408</startdate><enddate>200408</enddate><creator>Schulkin, Brian</creator><creator>Sztancsik, Laszlo</creator><creator>Federici, John F.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200408</creationdate><title>Analytical solution for photonic band-gap crystals using Drude conductivity</title><author>Schulkin, Brian ; Sztancsik, Laszlo ; Federici, John F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Band gap</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulkin, Brian</creatorcontrib><creatorcontrib>Sztancsik, Laszlo</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulkin, Brian</au><au>Sztancsik, Laszlo</au><au>Federici, John F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution for photonic band-gap crystals using Drude conductivity</atitle><jtitle>American journal of physics</jtitle><date>2004-08</date><risdate>2004</risdate><volume>72</volume><issue>8</issue><spage>1051</spage><epage>1054</epage><pages>1051-1054</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.1758223</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2004-08, Vol.72 (8), p.1051-1054
issn 0002-9505
1943-2909
language eng
recordid cdi_crossref_primary_10_1119_1_1758223
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Band gap
Mathematical analysis
Physics
Semiconductors
Thermodynamics
title Analytical solution for photonic band-gap crystals using Drude conductivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20for%20photonic%20band-gap%20crystals%20using%20Drude%20conductivity&rft.jtitle=American%20journal%20of%20physics&rft.au=Schulkin,%20Brian&rft.date=2004-08&rft.volume=72&rft.issue=8&rft.spage=1051&rft.epage=1054&rft.pages=1051-1054&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.1758223&rft_dat=%3Cproquest_cross%3E775199951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216699716&rft_id=info:pmid/&rfr_iscdi=true