Loading…
Analytical solution for photonic band-gap crystals using Drude conductivity
An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are tran...
Saved in:
Published in: | American journal of physics 2004-08, Vol.72 (8), p.1051-1054 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553 |
container_end_page | 1054 |
container_issue | 8 |
container_start_page | 1051 |
container_title | American journal of physics |
container_volume | 72 |
creator | Schulkin, Brian Sztancsik, Laszlo Federici, John F. |
description | An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal. |
doi_str_mv | 10.1119/1.1758223 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_1758223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>775199951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcI7hSm5jKZJstSr1hwo-uQyaWmjJMxyRTm7Z3SogvB1eFwPn44PwCXGM0wxuIWz_CccULoEZhgUdKCCCSOwQQhRArBEDsFZyltxlVgjibgZdGqZsheqwam0PTZhxa6EGH3EXJovYa1ak2xVh3UcUhZNQn2ybdreBd7Y6EOrel19lufh3Nw4sa7vTjMKXh_uH9bPhWr18fn5WJVaErKXNSGC4y5QIxxro0hRAvKrCotR7WqKOXIleOFMmoNdq5m1lFtCamVEJoxOgVX-9wuhq_epiw3oY_jH0kSXFVCzHE1ous90jGkFK2TXfSfKg4SI7mrSmJ5qGq0N3ubtM9qV8EP3ob4C2Vn3H_4b_I3VjR31A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216699716</pqid></control><display><type>article</type><title>Analytical solution for photonic band-gap crystals using Drude conductivity</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Schulkin, Brian ; Sztancsik, Laszlo ; Federici, John F.</creator><creatorcontrib>Schulkin, Brian ; Sztancsik, Laszlo ; Federici, John F.</creatorcontrib><description>An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.1758223</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Band gap ; Mathematical analysis ; Physics ; Semiconductors ; Thermodynamics</subject><ispartof>American journal of physics, 2004-08, Vol.72 (8), p.1051-1054</ispartof><rights>American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</citedby><cites>FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Schulkin, Brian</creatorcontrib><creatorcontrib>Sztancsik, Laszlo</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><title>Analytical solution for photonic band-gap crystals using Drude conductivity</title><title>American journal of physics</title><description>An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.</description><subject>Band gap</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Thermodynamics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcI7hSm5jKZJstSr1hwo-uQyaWmjJMxyRTm7Z3SogvB1eFwPn44PwCXGM0wxuIWz_CccULoEZhgUdKCCCSOwQQhRArBEDsFZyltxlVgjibgZdGqZsheqwam0PTZhxa6EGH3EXJovYa1ak2xVh3UcUhZNQn2ybdreBd7Y6EOrel19lufh3Nw4sa7vTjMKXh_uH9bPhWr18fn5WJVaErKXNSGC4y5QIxxro0hRAvKrCotR7WqKOXIleOFMmoNdq5m1lFtCamVEJoxOgVX-9wuhq_epiw3oY_jH0kSXFVCzHE1ous90jGkFK2TXfSfKg4SI7mrSmJ5qGq0N3ubtM9qV8EP3ob4C2Vn3H_4b_I3VjR31A</recordid><startdate>200408</startdate><enddate>200408</enddate><creator>Schulkin, Brian</creator><creator>Sztancsik, Laszlo</creator><creator>Federici, John F.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200408</creationdate><title>Analytical solution for photonic band-gap crystals using Drude conductivity</title><author>Schulkin, Brian ; Sztancsik, Laszlo ; Federici, John F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Band gap</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulkin, Brian</creatorcontrib><creatorcontrib>Sztancsik, Laszlo</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulkin, Brian</au><au>Sztancsik, Laszlo</au><au>Federici, John F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution for photonic band-gap crystals using Drude conductivity</atitle><jtitle>American journal of physics</jtitle><date>2004-08</date><risdate>2004</risdate><volume>72</volume><issue>8</issue><spage>1051</spage><epage>1054</epage><pages>1051-1054</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>An analytical solution for the photonic band-gap of semiconductor structures in the terahertz (THz) frequency range is discussed. In analogy with the Kronig–Penney model for electronic band-gaps in periodic potentials, Maxwell’s equations for the propagation of light in the photonic crystal are transformed into an equivalent form of Schrödinger’s equation. In the THz frequency range, the refractive index of the semiconductor is well represented by a frequency-dependent Drude model. We thus find a Kronig–Penney type solution for the photonic band-gap crystal.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.1758223</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American journal of physics, 2004-08, Vol.72 (8), p.1051-1054 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_crossref_primary_10_1119_1_1758223 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Band gap Mathematical analysis Physics Semiconductors Thermodynamics |
title | Analytical solution for photonic band-gap crystals using Drude conductivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20for%20photonic%20band-gap%20crystals%20using%20Drude%20conductivity&rft.jtitle=American%20journal%20of%20physics&rft.au=Schulkin,%20Brian&rft.date=2004-08&rft.volume=72&rft.issue=8&rft.spage=1051&rft.epage=1054&rft.pages=1051-1054&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.1758223&rft_dat=%3Cproquest_cross%3E775199951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-bd89118905588cdd22c935ea4e80ba63380f488c353ed1ffb5ef3ce22ba99c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216699716&rft_id=info:pmid/&rfr_iscdi=true |