Loading…
The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation
The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. T...
Saved in:
Published in: | American journal of physics 2008-01, Vol.76 (1), p.55-59 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473 |
container_end_page | 59 |
container_issue | 1 |
container_start_page | 55 |
container_title | American journal of physics |
container_volume | 76 |
creator | Herrera, William J. Diaz, Rodolfo A. |
description | The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties. |
doi_str_mv | 10.1119/1.2800355 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_2800355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1404744801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</originalsourceid><addsrcrecordid>eNqNkM9KxDAQh4MouK4efIPgTaFrpm22zUUQ8R8seFnPYZqkbpfdppukgjdfw9fzSUzZBb0onjIZPn4z8xFyCmwCAOISJmnJWMb5HhmByLMkFUzskxFjLE0EZ_yQHHm_jF8BJRuRxXxh6IuxaxNco3BFWwy9MxRbTX3s0s7ZzrjQGE9tTUOkFXaomoCtirU1dd2oxrTB0wq90dS2dIbdCpX5fP_w1Gx6DI1tj8lBjStvTnbvmDzf3c5vHpLZ0_3jzfUsUVkJIYGqrBhHXmnMsVRxzakupjplyAEqITRoUYJGxDTlLMe0LouqADRYAhZ5kY3J2TY3Lr7pjQ9yaXvXxpEyhWkBLGMiQudbSDnrvTO17FyzRvcmgcnBowS58xjZqy3rh6OHU36Ho0z5Q6YcZMaAi38H_AW_WvcNyk7X2Rcx4JhT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216710309</pqid></control><display><type>article</type><title>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Herrera, William J. ; Diaz, Rodolfo A.</creator><creatorcontrib>Herrera, William J. ; Diaz, Rodolfo A.</creatorcontrib><description>The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.2800355</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Association of Physics Teachers</publisher><subject>Electricity ; Laplace transforms ; Magnetism ; Physics</subject><ispartof>American journal of physics, 2008-01, Vol.76 (1), p.55-59</ispartof><rights>American Association of Physics Teachers</rights><rights>2008 American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</citedby><cites>FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Herrera, William J.</creatorcontrib><creatorcontrib>Diaz, Rodolfo A.</creatorcontrib><title>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</title><title>American journal of physics</title><description>The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.</description><subject>Electricity</subject><subject>Laplace transforms</subject><subject>Magnetism</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM9KxDAQh4MouK4efIPgTaFrpm22zUUQ8R8seFnPYZqkbpfdppukgjdfw9fzSUzZBb0onjIZPn4z8xFyCmwCAOISJmnJWMb5HhmByLMkFUzskxFjLE0EZ_yQHHm_jF8BJRuRxXxh6IuxaxNco3BFWwy9MxRbTX3s0s7ZzrjQGE9tTUOkFXaomoCtirU1dd2oxrTB0wq90dS2dIbdCpX5fP_w1Gx6DI1tj8lBjStvTnbvmDzf3c5vHpLZ0_3jzfUsUVkJIYGqrBhHXmnMsVRxzakupjplyAEqITRoUYJGxDTlLMe0LouqADRYAhZ5kY3J2TY3Lr7pjQ9yaXvXxpEyhWkBLGMiQudbSDnrvTO17FyzRvcmgcnBowS58xjZqy3rh6OHU36Ho0z5Q6YcZMaAi38H_AW_WvcNyk7X2Rcx4JhT</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Herrera, William J.</creator><creator>Diaz, Rodolfo A.</creator><general>American Association of Physics Teachers</general><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200801</creationdate><title>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</title><author>Herrera, William J. ; Diaz, Rodolfo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Electricity</topic><topic>Laplace transforms</topic><topic>Magnetism</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, William J.</creatorcontrib><creatorcontrib>Diaz, Rodolfo A.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, William J.</au><au>Diaz, Rodolfo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</atitle><jtitle>American journal of physics</jtitle><date>2008-01</date><risdate>2008</risdate><volume>76</volume><issue>1</issue><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.</abstract><cop>Woodbury</cop><pub>American Association of Physics Teachers</pub><doi>10.1119/1.2800355</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American journal of physics, 2008-01, Vol.76 (1), p.55-59 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_crossref_primary_10_1119_1_2800355 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Electricity Laplace transforms Magnetism Physics |
title | The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometrical%20nature%20and%20some%20properties%20of%20the%20capacitance%20coefficients%20based%20on%20Laplace%E2%80%99s%20equation&rft.jtitle=American%20journal%20of%20physics&rft.au=Herrera,%20William%20J.&rft.date=2008-01&rft.volume=76&rft.issue=1&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.2800355&rft_dat=%3Cproquest_cross%3E1404744801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216710309&rft_id=info:pmid/&rfr_iscdi=true |