Loading…

The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation

The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. T...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physics 2008-01, Vol.76 (1), p.55-59
Main Authors: Herrera, William J., Diaz, Rodolfo A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473
cites cdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473
container_end_page 59
container_issue 1
container_start_page 55
container_title American journal of physics
container_volume 76
creator Herrera, William J.
Diaz, Rodolfo A.
description The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.
doi_str_mv 10.1119/1.2800355
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_2800355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1404744801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</originalsourceid><addsrcrecordid>eNqNkM9KxDAQh4MouK4efIPgTaFrpm22zUUQ8R8seFnPYZqkbpfdppukgjdfw9fzSUzZBb0onjIZPn4z8xFyCmwCAOISJmnJWMb5HhmByLMkFUzskxFjLE0EZ_yQHHm_jF8BJRuRxXxh6IuxaxNco3BFWwy9MxRbTX3s0s7ZzrjQGE9tTUOkFXaomoCtirU1dd2oxrTB0wq90dS2dIbdCpX5fP_w1Gx6DI1tj8lBjStvTnbvmDzf3c5vHpLZ0_3jzfUsUVkJIYGqrBhHXmnMsVRxzakupjplyAEqITRoUYJGxDTlLMe0LouqADRYAhZ5kY3J2TY3Lr7pjQ9yaXvXxpEyhWkBLGMiQudbSDnrvTO17FyzRvcmgcnBowS58xjZqy3rh6OHU36Ho0z5Q6YcZMaAi38H_AW_WvcNyk7X2Rcx4JhT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216710309</pqid></control><display><type>article</type><title>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Herrera, William J. ; Diaz, Rodolfo A.</creator><creatorcontrib>Herrera, William J. ; Diaz, Rodolfo A.</creatorcontrib><description>The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.2800355</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Association of Physics Teachers</publisher><subject>Electricity ; Laplace transforms ; Magnetism ; Physics</subject><ispartof>American journal of physics, 2008-01, Vol.76 (1), p.55-59</ispartof><rights>American Association of Physics Teachers</rights><rights>2008 American Association of Physics Teachers</rights><rights>Copyright American Institute of Physics Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</citedby><cites>FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Herrera, William J.</creatorcontrib><creatorcontrib>Diaz, Rodolfo A.</creatorcontrib><title>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</title><title>American journal of physics</title><description>The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.</description><subject>Electricity</subject><subject>Laplace transforms</subject><subject>Magnetism</subject><subject>Physics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM9KxDAQh4MouK4efIPgTaFrpm22zUUQ8R8seFnPYZqkbpfdppukgjdfw9fzSUzZBb0onjIZPn4z8xFyCmwCAOISJmnJWMb5HhmByLMkFUzskxFjLE0EZ_yQHHm_jF8BJRuRxXxh6IuxaxNco3BFWwy9MxRbTX3s0s7ZzrjQGE9tTUOkFXaomoCtirU1dd2oxrTB0wq90dS2dIbdCpX5fP_w1Gx6DI1tj8lBjStvTnbvmDzf3c5vHpLZ0_3jzfUsUVkJIYGqrBhHXmnMsVRxzakupjplyAEqITRoUYJGxDTlLMe0LouqADRYAhZ5kY3J2TY3Lr7pjQ9yaXvXxpEyhWkBLGMiQudbSDnrvTO17FyzRvcmgcnBowS58xjZqy3rh6OHU36Ho0z5Q6YcZMaAi38H_AW_WvcNyk7X2Rcx4JhT</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Herrera, William J.</creator><creator>Diaz, Rodolfo A.</creator><general>American Association of Physics Teachers</general><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200801</creationdate><title>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</title><author>Herrera, William J. ; Diaz, Rodolfo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Electricity</topic><topic>Laplace transforms</topic><topic>Magnetism</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, William J.</creatorcontrib><creatorcontrib>Diaz, Rodolfo A.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, William J.</au><au>Diaz, Rodolfo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation</atitle><jtitle>American journal of physics</jtitle><date>2008-01</date><risdate>2008</risdate><volume>76</volume><issue>1</issue><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplace’s equation that is accessible to students in an intermediate course on electricity and magnetism. The properties of Laplace’s equation permits us to determine many properties of the capacitance matrix. Some examples are given to illustrate the usefulness of these properties.</abstract><cop>Woodbury</cop><pub>American Association of Physics Teachers</pub><doi>10.1119/1.2800355</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2008-01, Vol.76 (1), p.55-59
issn 0002-9505
1943-2909
language eng
recordid cdi_crossref_primary_10_1119_1_2800355
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Electricity
Laplace transforms
Magnetism
Physics
title The geometrical nature and some properties of the capacitance coefficients based on Laplace’s equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometrical%20nature%20and%20some%20properties%20of%20the%20capacitance%20coefficients%20based%20on%20Laplace%E2%80%99s%20equation&rft.jtitle=American%20journal%20of%20physics&rft.au=Herrera,%20William%20J.&rft.date=2008-01&rft.volume=76&rft.issue=1&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.2800355&rft_dat=%3Cproquest_cross%3E1404744801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-1b8b05a5bda4a8c0096d76d20a511b99d1d981daaa22504a2f87b71aea81a7473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216710309&rft_id=info:pmid/&rfr_iscdi=true