Loading…

Observations of upper ocean sound-speed structures in the North Pacific and their effects on long-range acoustic propagation at low and mid-frequencies

Three 1000-km long, high resolution conductivity, temperature, depth sections in the North Pacific Ocean obtained by the ship towed vehicle SeaSoar are analyzed to quantify 2005 March/April upper-ocean sound-speed structure and determine the effects on low to mid-frequency transmission loss (TL) thr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2020-10, Vol.148 (4), p.2040-2060
Main Authors: Colosi, John A., Rudnick, Daniel L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three 1000-km long, high resolution conductivity, temperature, depth sections in the North Pacific Ocean obtained by the ship towed vehicle SeaSoar are analyzed to quantify 2005 March/April upper-ocean sound-speed structure and determine the effects on low to mid-frequency transmission loss (TL) through numerical simulation. The observations reveal a variable mixed layer acoustic duct (MLAD) with a mean sonic layer depth of 91-m, and an even higher variability, 80-m-average-thickness transition layer connecting the mixed layer (ML) with the main thermocline. The sound-speed structure is hypothesized to be associated with thermohaline processes such as air-sea fluxes, eddies, submesoscale, fronts, internal waves, turbulence, and spice, but the analysis does not isolate these factors. Upper-ocean variability is quantified using observables of layer depth, ML gradient, and sound speed to compute low order moments, probability density functions, horizontal wavenumber spectra, and empirical orthogonal function decomposition. Coupled mode acoustic propagation simulations at 400 and 1000 Hz were carried out using the sound-speed observations from the upper 400-m appended to climatology, which reveal propagation physics associated with diffraction, random media effects, and deterministic feature scattering. Statistics of TL reveal important energy transfers between the MLAD and the deep sound channel.
ISSN:0001-4966
1520-8524
DOI:10.1121/10.0002174