Loading…

Low-intensity ultrasound activates vestibular otolith organs through acoustic radiation force

The present study examined the efficacy of 5 MHz low-intensity focused ultrasound (LiFU) as a stimulus to remotely activate inner ear vestibular otolith organs. The otolith organs are the primary sensory apparati responsible for detecting orientation of the head relative to gravity and linear accele...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2017-06, Vol.141 (6), p.4209-4219
Main Authors: Iversen, M. M., Christensen, D. A., Parker, D. L., Holman, H. A., Chen, J., Frerck, M. J., Rabbitt, R. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study examined the efficacy of 5 MHz low-intensity focused ultrasound (LiFU) as a stimulus to remotely activate inner ear vestibular otolith organs. The otolith organs are the primary sensory apparati responsible for detecting orientation of the head relative to gravity and linear acceleration in three-dimensional space. These organs also respond to loud sounds and vibration of the temporal bone. The oyster toadfish, Opsanus tau, was used to facilitate unobstructed acoustic access to the otolith organs in vivo. Single-unit responses to amplitude-modulated LiFU were recorded in afferent neurons identified as innervating the utricle or the saccule. Neural responses were equivalent to direct mechanical stimulation, and arose from the nonlinear acoustic radiation force acting on the otolithic mass. The magnitude of the acoustic radiation force acting on the otolith was measured ex vivo. Results demonstrate that LiFU stimuli can be tuned to mimic directional forces occurring naturally during physiological movements of the head, loud air conducted sound, or bone conducted vibration.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.4984287