Loading…

Contactless interfacial rheology: Probing shear at liquid–liquid interfaces without an interfacial geometry via fluorescence microscopy

Interfacial rheology is important for understanding properties such as Pickering emulsion or foam stability. Currently, the response is measured using a probe directly attached to the interface. This can both disturb the interface and is coupled to flow in the bulk phase, limiting its sensitivity. W...

Full description

Saved in:
Bibliographic Details
Published in:Journal of rheology (New York : 1978) 2023-01, Vol.67 (1), p.67-80
Main Authors: Muntz, Iain, Richards, James A., Brown, Sam, Schofield, Andrew B., Rey, Marcel, Thijssen, Job H. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963
cites cdi_FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963
container_end_page 80
container_issue 1
container_start_page 67
container_title Journal of rheology (New York : 1978)
container_volume 67
creator Muntz, Iain
Richards, James A.
Brown, Sam
Schofield, Andrew B.
Rey, Marcel
Thijssen, Job H. J.
description Interfacial rheology is important for understanding properties such as Pickering emulsion or foam stability. Currently, the response is measured using a probe directly attached to the interface. This can both disturb the interface and is coupled to flow in the bulk phase, limiting its sensitivity. We have developed a contactless interfacial method to perform interfacial shear rheology on liquid/liquid interfaces with no tool attached directly to the interface. This is achieved by shearing one of the liquid phases and measuring the interfacial response via confocal microscopy. Using this method, we have measured steady shear material parameters such as interfacial elastic moduli for interfaces with solidlike behavior and interfacial viscosities for fluidlike interfaces. The accuracy of this method has been verified relative to a double-wall ring geometry. Moreover, using our contactless method, we are able to measure lower interfacial viscosities than those that have previously been reported using a double-wall ring geometry. A further advantage is the simultaneous combination of macroscopic rheological analysis with microscopic structural analysis. Our analysis directly visualizes how the interfacial response is strongly correlated to the particle surface coverage and their interfacial assembly. Furthermore, we capture the evolution and irreversible changes in the particle assembly that correspond with the rheological response to steady shear.
doi_str_mv 10.1122/8.0000559
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1122_8_0000559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1122_8_0000559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8A-8gpTij8RJ2FDFl1QJBpgt-3BSozQOtgPKxsrMP-SXkKpVJRZuudPd8766O4ROKZlRythFMSNjZFm5hyY0YyQpMir20YTQtEjEODhERyG8EkJpkYoJ-pq7NiqIjQkB2zYaXymwqsF-aVzj6uESP3qnbVvjsDTKYxVxY996-_Lz-b0pdjIT8IeNS9dHrNo_ZrVxKxP9gN-twlXTO28CmBYMXlnwLoDrhmN0UKkmmJNtnqLnm-un-V2yeLi9n18tEuA8j4lOOUChyzxTOYcqp5AxlYNWhHFdaDaemKcAOhcMgBvOiRaCECUEMwUrBZ-iZOMbPkzXa9l5u1J-kE5ZWfedHFt1L4ORnDFepiN_tuHXiwZvqp2CErn-uSzk9ucje771BhtVtK79B_4Fry2GXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contactless interfacial rheology: Probing shear at liquid–liquid interfaces without an interfacial geometry via fluorescence microscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Muntz, Iain ; Richards, James A. ; Brown, Sam ; Schofield, Andrew B. ; Rey, Marcel ; Thijssen, Job H. J.</creator><creatorcontrib>Muntz, Iain ; Richards, James A. ; Brown, Sam ; Schofield, Andrew B. ; Rey, Marcel ; Thijssen, Job H. J.</creatorcontrib><description>Interfacial rheology is important for understanding properties such as Pickering emulsion or foam stability. Currently, the response is measured using a probe directly attached to the interface. This can both disturb the interface and is coupled to flow in the bulk phase, limiting its sensitivity. We have developed a contactless interfacial method to perform interfacial shear rheology on liquid/liquid interfaces with no tool attached directly to the interface. This is achieved by shearing one of the liquid phases and measuring the interfacial response via confocal microscopy. Using this method, we have measured steady shear material parameters such as interfacial elastic moduli for interfaces with solidlike behavior and interfacial viscosities for fluidlike interfaces. The accuracy of this method has been verified relative to a double-wall ring geometry. Moreover, using our contactless method, we are able to measure lower interfacial viscosities than those that have previously been reported using a double-wall ring geometry. A further advantage is the simultaneous combination of macroscopic rheological analysis with microscopic structural analysis. Our analysis directly visualizes how the interfacial response is strongly correlated to the particle surface coverage and their interfacial assembly. Furthermore, we capture the evolution and irreversible changes in the particle assembly that correspond with the rheological response to steady shear.</description><identifier>ISSN: 0148-6055</identifier><identifier>EISSN: 1520-8516</identifier><identifier>DOI: 10.1122/8.0000559</identifier><identifier>CODEN: JORHD2</identifier><language>eng</language><subject>air-water-interface ; attraction ; colloids ; compression ; dynamics ; flow ; fluorescence ; Fysik ; interfacial rheology ; liquid interfaces ; Mechanics ; microscopy ; microstructure ; monolayers ; particle-laden interfaces ; Physical Sciences ; shear ; viscoelasticity ; yield</subject><ispartof>Journal of rheology (New York : 1978), 2023-01, Vol.67 (1), p.67-80</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963</citedby><cites>FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963</cites><orcidid>0000-0002-8741-856X ; 0000-0002-2775-6807 ; 0000-0001-7211-8348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://gup.ub.gu.se/publication/322394$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Muntz, Iain</creatorcontrib><creatorcontrib>Richards, James A.</creatorcontrib><creatorcontrib>Brown, Sam</creatorcontrib><creatorcontrib>Schofield, Andrew B.</creatorcontrib><creatorcontrib>Rey, Marcel</creatorcontrib><creatorcontrib>Thijssen, Job H. J.</creatorcontrib><title>Contactless interfacial rheology: Probing shear at liquid–liquid interfaces without an interfacial geometry via fluorescence microscopy</title><title>Journal of rheology (New York : 1978)</title><description>Interfacial rheology is important for understanding properties such as Pickering emulsion or foam stability. Currently, the response is measured using a probe directly attached to the interface. This can both disturb the interface and is coupled to flow in the bulk phase, limiting its sensitivity. We have developed a contactless interfacial method to perform interfacial shear rheology on liquid/liquid interfaces with no tool attached directly to the interface. This is achieved by shearing one of the liquid phases and measuring the interfacial response via confocal microscopy. Using this method, we have measured steady shear material parameters such as interfacial elastic moduli for interfaces with solidlike behavior and interfacial viscosities for fluidlike interfaces. The accuracy of this method has been verified relative to a double-wall ring geometry. Moreover, using our contactless method, we are able to measure lower interfacial viscosities than those that have previously been reported using a double-wall ring geometry. A further advantage is the simultaneous combination of macroscopic rheological analysis with microscopic structural analysis. Our analysis directly visualizes how the interfacial response is strongly correlated to the particle surface coverage and their interfacial assembly. Furthermore, we capture the evolution and irreversible changes in the particle assembly that correspond with the rheological response to steady shear.</description><subject>air-water-interface</subject><subject>attraction</subject><subject>colloids</subject><subject>compression</subject><subject>dynamics</subject><subject>flow</subject><subject>fluorescence</subject><subject>Fysik</subject><subject>interfacial rheology</subject><subject>liquid interfaces</subject><subject>Mechanics</subject><subject>microscopy</subject><subject>microstructure</subject><subject>monolayers</subject><subject>particle-laden interfaces</subject><subject>Physical Sciences</subject><subject>shear</subject><subject>viscoelasticity</subject><subject>yield</subject><issn>0148-6055</issn><issn>1520-8516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kD1PwzAQhi0EEqUw8A-8gpTij8RJ2FDFl1QJBpgt-3BSozQOtgPKxsrMP-SXkKpVJRZuudPd8766O4ROKZlRythFMSNjZFm5hyY0YyQpMir20YTQtEjEODhERyG8EkJpkYoJ-pq7NiqIjQkB2zYaXymwqsF-aVzj6uESP3qnbVvjsDTKYxVxY996-_Lz-b0pdjIT8IeNS9dHrNo_ZrVxKxP9gN-twlXTO28CmBYMXlnwLoDrhmN0UKkmmJNtnqLnm-un-V2yeLi9n18tEuA8j4lOOUChyzxTOYcqp5AxlYNWhHFdaDaemKcAOhcMgBvOiRaCECUEMwUrBZ-iZOMbPkzXa9l5u1J-kE5ZWfedHFt1L4ORnDFepiN_tuHXiwZvqp2CErn-uSzk9ucje771BhtVtK79B_4Fry2GXw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Muntz, Iain</creator><creator>Richards, James A.</creator><creator>Brown, Sam</creator><creator>Schofield, Andrew B.</creator><creator>Rey, Marcel</creator><creator>Thijssen, Job H. J.</creator><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0002-8741-856X</orcidid><orcidid>https://orcid.org/0000-0002-2775-6807</orcidid><orcidid>https://orcid.org/0000-0001-7211-8348</orcidid></search><sort><creationdate>202301</creationdate><title>Contactless interfacial rheology: Probing shear at liquid–liquid interfaces without an interfacial geometry via fluorescence microscopy</title><author>Muntz, Iain ; Richards, James A. ; Brown, Sam ; Schofield, Andrew B. ; Rey, Marcel ; Thijssen, Job H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>air-water-interface</topic><topic>attraction</topic><topic>colloids</topic><topic>compression</topic><topic>dynamics</topic><topic>flow</topic><topic>fluorescence</topic><topic>Fysik</topic><topic>interfacial rheology</topic><topic>liquid interfaces</topic><topic>Mechanics</topic><topic>microscopy</topic><topic>microstructure</topic><topic>monolayers</topic><topic>particle-laden interfaces</topic><topic>Physical Sciences</topic><topic>shear</topic><topic>viscoelasticity</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muntz, Iain</creatorcontrib><creatorcontrib>Richards, James A.</creatorcontrib><creatorcontrib>Brown, Sam</creatorcontrib><creatorcontrib>Schofield, Andrew B.</creatorcontrib><creatorcontrib>Rey, Marcel</creatorcontrib><creatorcontrib>Thijssen, Job H. J.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Journal of rheology (New York : 1978)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muntz, Iain</au><au>Richards, James A.</au><au>Brown, Sam</au><au>Schofield, Andrew B.</au><au>Rey, Marcel</au><au>Thijssen, Job H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contactless interfacial rheology: Probing shear at liquid–liquid interfaces without an interfacial geometry via fluorescence microscopy</atitle><jtitle>Journal of rheology (New York : 1978)</jtitle><date>2023-01</date><risdate>2023</risdate><volume>67</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0148-6055</issn><eissn>1520-8516</eissn><coden>JORHD2</coden><abstract>Interfacial rheology is important for understanding properties such as Pickering emulsion or foam stability. Currently, the response is measured using a probe directly attached to the interface. This can both disturb the interface and is coupled to flow in the bulk phase, limiting its sensitivity. We have developed a contactless interfacial method to perform interfacial shear rheology on liquid/liquid interfaces with no tool attached directly to the interface. This is achieved by shearing one of the liquid phases and measuring the interfacial response via confocal microscopy. Using this method, we have measured steady shear material parameters such as interfacial elastic moduli for interfaces with solidlike behavior and interfacial viscosities for fluidlike interfaces. The accuracy of this method has been verified relative to a double-wall ring geometry. Moreover, using our contactless method, we are able to measure lower interfacial viscosities than those that have previously been reported using a double-wall ring geometry. A further advantage is the simultaneous combination of macroscopic rheological analysis with microscopic structural analysis. Our analysis directly visualizes how the interfacial response is strongly correlated to the particle surface coverage and their interfacial assembly. Furthermore, we capture the evolution and irreversible changes in the particle assembly that correspond with the rheological response to steady shear.</abstract><doi>10.1122/8.0000559</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8741-856X</orcidid><orcidid>https://orcid.org/0000-0002-2775-6807</orcidid><orcidid>https://orcid.org/0000-0001-7211-8348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-6055
ispartof Journal of rheology (New York : 1978), 2023-01, Vol.67 (1), p.67-80
issn 0148-6055
1520-8516
language eng
recordid cdi_crossref_primary_10_1122_8_0000559
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects air-water-interface
attraction
colloids
compression
dynamics
flow
fluorescence
Fysik
interfacial rheology
liquid interfaces
Mechanics
microscopy
microstructure
monolayers
particle-laden interfaces
Physical Sciences
shear
viscoelasticity
yield
title Contactless interfacial rheology: Probing shear at liquid–liquid interfaces without an interfacial geometry via fluorescence microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contactless%20interfacial%20rheology:%20Probing%20shear%20at%20liquid%E2%80%93liquid%20interfaces%20without%20an%20interfacial%20geometry%20via%20fluorescence%20microscopy&rft.jtitle=Journal%20of%20rheology%20(New%20York%20:%201978)&rft.au=Muntz,%20Iain&rft.date=2023-01&rft.volume=67&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0148-6055&rft.eissn=1520-8516&rft.coden=JORHD2&rft_id=info:doi/10.1122/8.0000559&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1122_8_0000559%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-b43cc8b975a73cf71c52a7cba023b8b205574ccb762cc3e330b6600a662e82963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true