Loading…
Distinguishing Passive and Active Standing Behaviors From Accelerometry
Purpose : To investigate whether active standing can be identified separately from passive standing via accelerometry data and to develop and test the accuracy of a machine-learning model to classify active and passive standing. Methods : Ten participants wore a thigh-mounted activPAL monitor and st...
Saved in:
Published in: | Journal for the measurement of physical behaviour 2024-01, Vol.7 (1) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c124t-134d3319b5b13a6c4351a2066a925437196c62cd6b311f728b3ce3c48cbfde263 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal for the measurement of physical behaviour |
container_volume | 7 |
creator | Kowalsky, Robert J. van Werkhoven, Herman Meucci, Marco Quinn, Tyler D. Stoner, Lee Hearon, Christopher M. Barone Gibbs, Bethany |
description | Purpose : To investigate whether active standing can be identified separately from passive standing via accelerometry data and to develop and test the accuracy of a machine-learning model to classify active and passive standing. Methods : Ten participants wore a thigh-mounted activPAL monitor and stood for three 5-min periods in the following order: (a) PASSIVE: standing with no movement; (b) ACTIVE: five structured weight-shifting micromovements in the medial–lateral, superior–inferior, and anterior–poster planes while standing; and (c) FREE: participant’s choice of active standing. Averages of absolute resultant acceleration values in 15-s epochs were compared via analysis of variance (Bonferroni adjustment for pairwise comparisons) to confirm the dichotomization ability of the standing behaviors. Absolute resultant acceleration values and SD s in 2- and 5-s epochs were used to develop a machine-learning model using leave-one-subject-out cross validation. The final accuracy of the model was assessed using the area under the curve from a receiver operating characteristic curve. Results : Comparison of resultant accelerations across the three conditions (PASSIVE, ACTIVE, and FREE) resulted in a significant omnibus difference, F (2, 19) = [116], p < .001, η 2 = .86, and in all pairwise post hoc comparisons (all p < .001). The machine-learning model using 5-s epochs resulted in 94% accuracy for the classification of PASSIVE versus ACTIVE standing. Model application to the FREE data resulted in an absolute average difference of 4.8% versus direct observation and an area under the curve value of 0.71. Conclusions : Active standing in three planes of movement can be identified from thigh-worn accelerometry via a machine-learning model, yet model refinement is warranted. |
doi_str_mv | 10.1123/jmpb.2024-0004 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1123_jmpb_2024_0004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1123_jmpb_2024_0004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-134d3319b5b13a6c4351a2066a925437196c62cd6b311f728b3ce3c48cbfde263</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWGq3rucHMublJZnOslbbCgUFdR2STMamdDolGQv9eycoru553MtbHELugZUAHB_23cmWnHFBGWPiiky4rCRVCvD6n5m8JbOU9uOCgwTGqglZP4U0hOPXd0i7MYo3k1I4-8Icm2Lhhozvw3jk7tHvzDn0MRWr2Hdj7fzBj-SHeLkjN605JD_7yyn5XD1_LDd0-7p-WS621AEXAwUUDSLUVlpAo5xACYYzpUzNpcAKauUUd42yCNBWfG7ReXRi7mzbeK5wSsrfvy72KUXf6lMMnYkXDUxnEzqb0NmEzibwB4WCUWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distinguishing Passive and Active Standing Behaviors From Accelerometry</title><source>Human Kinetics Journals</source><creator>Kowalsky, Robert J. ; van Werkhoven, Herman ; Meucci, Marco ; Quinn, Tyler D. ; Stoner, Lee ; Hearon, Christopher M. ; Barone Gibbs, Bethany</creator><creatorcontrib>Kowalsky, Robert J. ; van Werkhoven, Herman ; Meucci, Marco ; Quinn, Tyler D. ; Stoner, Lee ; Hearon, Christopher M. ; Barone Gibbs, Bethany</creatorcontrib><description>Purpose : To investigate whether active standing can be identified separately from passive standing via accelerometry data and to develop and test the accuracy of a machine-learning model to classify active and passive standing. Methods : Ten participants wore a thigh-mounted activPAL monitor and stood for three 5-min periods in the following order: (a) PASSIVE: standing with no movement; (b) ACTIVE: five structured weight-shifting micromovements in the medial–lateral, superior–inferior, and anterior–poster planes while standing; and (c) FREE: participant’s choice of active standing. Averages of absolute resultant acceleration values in 15-s epochs were compared via analysis of variance (Bonferroni adjustment for pairwise comparisons) to confirm the dichotomization ability of the standing behaviors. Absolute resultant acceleration values and SD s in 2- and 5-s epochs were used to develop a machine-learning model using leave-one-subject-out cross validation. The final accuracy of the model was assessed using the area under the curve from a receiver operating characteristic curve. Results : Comparison of resultant accelerations across the three conditions (PASSIVE, ACTIVE, and FREE) resulted in a significant omnibus difference, F (2, 19) = [116], p < .001, η 2 = .86, and in all pairwise post hoc comparisons (all p < .001). The machine-learning model using 5-s epochs resulted in 94% accuracy for the classification of PASSIVE versus ACTIVE standing. Model application to the FREE data resulted in an absolute average difference of 4.8% versus direct observation and an area under the curve value of 0.71. Conclusions : Active standing in three planes of movement can be identified from thigh-worn accelerometry via a machine-learning model, yet model refinement is warranted.</description><identifier>ISSN: 2575-6605</identifier><identifier>EISSN: 2575-6613</identifier><identifier>DOI: 10.1123/jmpb.2024-0004</identifier><language>eng</language><ispartof>Journal for the measurement of physical behaviour, 2024-01, Vol.7 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-134d3319b5b13a6c4351a2066a925437196c62cd6b311f728b3ce3c48cbfde263</cites><orcidid>0000-0001-9571-8223 ; 0000-0002-0172-062X ; 0000-0002-0682-2270 ; 0000-0002-0732-6148 ; 0000-0002-6756-069X ; 0000-0002-1549-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kowalsky, Robert J.</creatorcontrib><creatorcontrib>van Werkhoven, Herman</creatorcontrib><creatorcontrib>Meucci, Marco</creatorcontrib><creatorcontrib>Quinn, Tyler D.</creatorcontrib><creatorcontrib>Stoner, Lee</creatorcontrib><creatorcontrib>Hearon, Christopher M.</creatorcontrib><creatorcontrib>Barone Gibbs, Bethany</creatorcontrib><title>Distinguishing Passive and Active Standing Behaviors From Accelerometry</title><title>Journal for the measurement of physical behaviour</title><description>Purpose : To investigate whether active standing can be identified separately from passive standing via accelerometry data and to develop and test the accuracy of a machine-learning model to classify active and passive standing. Methods : Ten participants wore a thigh-mounted activPAL monitor and stood for three 5-min periods in the following order: (a) PASSIVE: standing with no movement; (b) ACTIVE: five structured weight-shifting micromovements in the medial–lateral, superior–inferior, and anterior–poster planes while standing; and (c) FREE: participant’s choice of active standing. Averages of absolute resultant acceleration values in 15-s epochs were compared via analysis of variance (Bonferroni adjustment for pairwise comparisons) to confirm the dichotomization ability of the standing behaviors. Absolute resultant acceleration values and SD s in 2- and 5-s epochs were used to develop a machine-learning model using leave-one-subject-out cross validation. The final accuracy of the model was assessed using the area under the curve from a receiver operating characteristic curve. Results : Comparison of resultant accelerations across the three conditions (PASSIVE, ACTIVE, and FREE) resulted in a significant omnibus difference, F (2, 19) = [116], p < .001, η 2 = .86, and in all pairwise post hoc comparisons (all p < .001). The machine-learning model using 5-s epochs resulted in 94% accuracy for the classification of PASSIVE versus ACTIVE standing. Model application to the FREE data resulted in an absolute average difference of 4.8% versus direct observation and an area under the curve value of 0.71. Conclusions : Active standing in three planes of movement can be identified from thigh-worn accelerometry via a machine-learning model, yet model refinement is warranted.</description><issn>2575-6605</issn><issn>2575-6613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWGq3rucHMublJZnOslbbCgUFdR2STMamdDolGQv9eycoru553MtbHELugZUAHB_23cmWnHFBGWPiiky4rCRVCvD6n5m8JbOU9uOCgwTGqglZP4U0hOPXd0i7MYo3k1I4-8Icm2Lhhozvw3jk7tHvzDn0MRWr2Hdj7fzBj-SHeLkjN605JD_7yyn5XD1_LDd0-7p-WS621AEXAwUUDSLUVlpAo5xACYYzpUzNpcAKauUUd42yCNBWfG7ReXRi7mzbeK5wSsrfvy72KUXf6lMMnYkXDUxnEzqb0NmEzibwB4WCUWU</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kowalsky, Robert J.</creator><creator>van Werkhoven, Herman</creator><creator>Meucci, Marco</creator><creator>Quinn, Tyler D.</creator><creator>Stoner, Lee</creator><creator>Hearon, Christopher M.</creator><creator>Barone Gibbs, Bethany</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9571-8223</orcidid><orcidid>https://orcid.org/0000-0002-0172-062X</orcidid><orcidid>https://orcid.org/0000-0002-0682-2270</orcidid><orcidid>https://orcid.org/0000-0002-0732-6148</orcidid><orcidid>https://orcid.org/0000-0002-6756-069X</orcidid><orcidid>https://orcid.org/0000-0002-1549-2082</orcidid></search><sort><creationdate>20240101</creationdate><title>Distinguishing Passive and Active Standing Behaviors From Accelerometry</title><author>Kowalsky, Robert J. ; van Werkhoven, Herman ; Meucci, Marco ; Quinn, Tyler D. ; Stoner, Lee ; Hearon, Christopher M. ; Barone Gibbs, Bethany</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-134d3319b5b13a6c4351a2066a925437196c62cd6b311f728b3ce3c48cbfde263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalsky, Robert J.</creatorcontrib><creatorcontrib>van Werkhoven, Herman</creatorcontrib><creatorcontrib>Meucci, Marco</creatorcontrib><creatorcontrib>Quinn, Tyler D.</creatorcontrib><creatorcontrib>Stoner, Lee</creatorcontrib><creatorcontrib>Hearon, Christopher M.</creatorcontrib><creatorcontrib>Barone Gibbs, Bethany</creatorcontrib><collection>CrossRef</collection><jtitle>Journal for the measurement of physical behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalsky, Robert J.</au><au>van Werkhoven, Herman</au><au>Meucci, Marco</au><au>Quinn, Tyler D.</au><au>Stoner, Lee</au><au>Hearon, Christopher M.</au><au>Barone Gibbs, Bethany</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing Passive and Active Standing Behaviors From Accelerometry</atitle><jtitle>Journal for the measurement of physical behaviour</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><issn>2575-6605</issn><eissn>2575-6613</eissn><abstract>Purpose : To investigate whether active standing can be identified separately from passive standing via accelerometry data and to develop and test the accuracy of a machine-learning model to classify active and passive standing. Methods : Ten participants wore a thigh-mounted activPAL monitor and stood for three 5-min periods in the following order: (a) PASSIVE: standing with no movement; (b) ACTIVE: five structured weight-shifting micromovements in the medial–lateral, superior–inferior, and anterior–poster planes while standing; and (c) FREE: participant’s choice of active standing. Averages of absolute resultant acceleration values in 15-s epochs were compared via analysis of variance (Bonferroni adjustment for pairwise comparisons) to confirm the dichotomization ability of the standing behaviors. Absolute resultant acceleration values and SD s in 2- and 5-s epochs were used to develop a machine-learning model using leave-one-subject-out cross validation. The final accuracy of the model was assessed using the area under the curve from a receiver operating characteristic curve. Results : Comparison of resultant accelerations across the three conditions (PASSIVE, ACTIVE, and FREE) resulted in a significant omnibus difference, F (2, 19) = [116], p < .001, η 2 = .86, and in all pairwise post hoc comparisons (all p < .001). The machine-learning model using 5-s epochs resulted in 94% accuracy for the classification of PASSIVE versus ACTIVE standing. Model application to the FREE data resulted in an absolute average difference of 4.8% versus direct observation and an area under the curve value of 0.71. Conclusions : Active standing in three planes of movement can be identified from thigh-worn accelerometry via a machine-learning model, yet model refinement is warranted.</abstract><doi>10.1123/jmpb.2024-0004</doi><orcidid>https://orcid.org/0000-0001-9571-8223</orcidid><orcidid>https://orcid.org/0000-0002-0172-062X</orcidid><orcidid>https://orcid.org/0000-0002-0682-2270</orcidid><orcidid>https://orcid.org/0000-0002-0732-6148</orcidid><orcidid>https://orcid.org/0000-0002-6756-069X</orcidid><orcidid>https://orcid.org/0000-0002-1549-2082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2575-6605 |
ispartof | Journal for the measurement of physical behaviour, 2024-01, Vol.7 (1) |
issn | 2575-6605 2575-6613 |
language | eng |
recordid | cdi_crossref_primary_10_1123_jmpb_2024_0004 |
source | Human Kinetics Journals |
title | Distinguishing Passive and Active Standing Behaviors From Accelerometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20Passive%20and%20Active%20Standing%20Behaviors%20From%20Accelerometry&rft.jtitle=Journal%20for%20the%20measurement%20of%20physical%20behaviour&rft.au=Kowalsky,%20Robert%20J.&rft.date=2024-01-01&rft.volume=7&rft.issue=1&rft.issn=2575-6605&rft.eissn=2575-6613&rft_id=info:doi/10.1123/jmpb.2024-0004&rft_dat=%3Ccrossref%3E10_1123_jmpb_2024_0004%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c124t-134d3319b5b13a6c4351a2066a925437196c62cd6b311f728b3ce3c48cbfde263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |