Loading…

In Vitro Characterization of Ertugliflozin Metabolism by UDP-Glucuronosyltransferase and Cytochrome P450 Enzymes

Ertugliflozin is primarily cleared through UDP-glucurosyltransferase (UGT)–mediated metabolism (86%) with minor oxidative clearance (12%). In vitro phenotyping involved enzyme kinetic characterization of UGTs or cytochrome P450 enzymes catalyzing formation of the major 3-O-β-glucuronide (M5c) and mi...

Full description

Saved in:
Bibliographic Details
Published in:Drug metabolism and disposition 2020-12, Vol.48 (12), p.1350-1363
Main Authors: Lapham, Kimberly, Callegari, Ernesto, Cianfrogna, Julie, Lin, Jian, Niosi, Mark, Orozco, Christine C., Sharma, Raman, Goosen, Theunis C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ertugliflozin is primarily cleared through UDP-glucurosyltransferase (UGT)–mediated metabolism (86%) with minor oxidative clearance (12%). In vitro phenotyping involved enzyme kinetic characterization of UGTs or cytochrome P450 enzymes catalyzing formation of the major 3-O-β-glucuronide (M5c) and minor 2-O-β-glucuronide (M5a), monohydroxylated ertugliflozin (M1 and M3), and des-ethyl ertugliflozin (M2) metabolites in human liver microsomes (HLMs). Fractional clearance (fCL) from HLM intrinsic clearance (CLint) indicated a major role for glucuronidation (fCL 0.96; CLint 37 µl/min per milligram) versus oxidative metabolism (fCL 0.04; CLint 1.64 µl/min per milligram). Substrate concentration at half-maximal velocity (Km), maximal rate of metabolism (Vmax), and CLint for M5c and M5a formation were 10.8 µM, 375 pmol/min per milligram, and 34.7 µl/min per milligram and 41.7 µM, 94.9 pmol/min per milligram, and 2.28 µl/min per milligram, respectively. Inhibition of HLM CLint with 10 µM digoxin or tranilast (UGT1A9) and 3 µM 16β-phenyllongifolol (UGT2B7/UGT2B4) resulted in fraction metabolism (fm) estimates of 0.81 and 0.19 for UGT1A9 and UGT2B7/UGT2B4, respectively. Relative activity factor scaling of recombinant enzyme kinetics provided comparable fm for UGT1A9 (0.86) and UGT2B7 (0.14). Km and Vmax for M1, M2, and M3 formation ranged 73.0–93.0 µM and 24.3–116 pmol/min per milligram, respectively, and was inhibited by ketoconazole (M1, M2, and M3) and montelukast (M2). In summary, ertugliflozin metabolism in HLMs was primarily mediated by UGT1A9 (78%) with minor contributions from UGT2B7/UGT2B4 (18%), CYP3A4 (3.4%), CYP3A5 (0.4%), and CYP2C8 (0.16%). Considering higher ertugliflozin oxidative metabolism (fCL 0.12) obtained from human mass balance, human systemic clearance is expected to be mediated by UGT1A9 (70%), UGT2B7/UGT2B4 (16%), CYP3A4 (10%), CYP3A5 (1.2%), CYP2C8 (0.5%), and renal elimination (2%). This manuscript describes the use of orthogonal approaches (i.e., enzyme kinetics, chemical inhibitors, and recombinant enzymes) to characterize the fraction of ertugliflozin metabolism through various UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) enzyme-mediated pathways. Phenotyping approaches routinely used to characterize CYP hepatic fractional metabolism (fm) to estimate specific enzymes contributing to overall systemic clearance were similarly applied for UGT-mediated metabolism. Defining the in vitro metabolic disposition and fm for ertugli
ISSN:0090-9556
1521-009X
DOI:10.1124/dmd.120.000171