Loading…

Mutational Analysis and Molecular Modeling of the Binding Pocket of the Metabotropic Glutamate 5 Receptor Negative Modulator 2-Methyl-6-(phenylethynyl)-pyridine

Metabotropic glutamate (mGlu) 5 is a G-protein-coupled metabotropic glutamate receptor that plays an important role as a modulator of synaptic plasticity, ion channel activity, and excitotoxicity. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) is a highly potent, noncompetitive, selective, and systemica...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmacology 2003-10, Vol.64 (4), p.823-832
Main Authors: Malherbe, Pari, Kratochwil, Nicole, Zenner, Marie-Théeése, Piussi, Jenny, Diener, Catherine, Kratzeisen, Claudia, Fischer, Christophe, Porter, Richard H.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metabotropic glutamate (mGlu) 5 is a G-protein-coupled metabotropic glutamate receptor that plays an important role as a modulator of synaptic plasticity, ion channel activity, and excitotoxicity. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) is a highly potent, noncompetitive, selective, and systemically active antagonist of mGlu5 receptors. It binds to a novel allosteric site that resides within the seven-transmembrane domain of mGlu5 receptors. Using site-directed mutagenesis, [3H]MPEP binding, a functional Ca2+ mobilization assay, and rhodopsin-based homology modeling, we identified eight residues (Pro-6543.36, Tyr-6583.40, Leu-7435.47, Thr-7806.44, Trp-7846.48, Phe-7876.51, Tyr-7916.55, and Ala-8097.47) that are crucial for MPEP-binding to rat mGlu5 receptors. Four mutations, Y6583.40V, W7846.48A, F7876.51A, and A8097.47V, caused complete loss of [3H]MPEP binding and also blocked the MPEP-mediated inhibition of quisqualate-induced intracellular Ca2+ mobilization. To visualize these experimental findings, we have constructed a homology model based on the X-ray crystal of bovine rhodopsin and have suggested a possible binding mode of MPEP. We propose that MPEP via its interactions with a network of the aromatic residues including Phe-6583.40 in transmembrane (TM) 3 helix and Trp-7986.48, Phe-7876.51, and Tyr-7916.55 in TM6 helix prevents the movement of TM6 helix relative to TM3 helix, a step that is required for receptor activation, and consequently stabilizes the inactive conformation of mGlu5 receptor. In the TM6 region, we observed a striking similarity between the critical residues involved in MPEP-binding site with those of previously identified as 1-ethyl-2-methyl-6-oxo-4-(1,2,4,5-tetrahydro-benzo[d]azepin-3-yl)-1,6-dihydropyrimidine-5-carbonitrile-binding pocket of mGlu1, pointing to a common mechanism of inhibition shared by both antagonists.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.64.4.823