Loading…
A fossil oceanic lithosphere preserved inside a continent
The recycling of oceanic lithosphere into the deep mantle at subduction zones is one of the most fundamental geodynamic processes on Earth. During the closure of an ocean, ancient oceanic slabs are thought to be consumed entirely in subduction zones due to their negative buoyancy. Yet, it is recentl...
Saved in:
Published in: | Geology (Boulder) 2023-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recycling of oceanic lithosphere into the deep mantle at subduction zones is one of the most fundamental geodynamic processes on Earth. During the closure of an ocean, ancient oceanic slabs are thought to be consumed entirely in subduction zones due to their negative buoyancy. Yet, it is recently suggested that small pieces of oceanic slabs could be trapped along paleo-subduction zones. What remains far more enigmatic is whether significant portions of paleo-oceanic lithosphere could eventually avoid the fate of subduction and be accreted to continental lithosphere, thus contributing to continental growth through time. We present seismic evidence for a preserved paleo-oceanic lithosphere beneath the Junggar region in northwestern China. We show that unsubducted oceanic lithosphere in the West Junggar has been preserved beneath the Junggar Basin, becoming a piece of the Eurasian continent. This scenario is likely to have occurred in other continents throughout Earth’s history, providing an additional and commonly underestimated contribution to the growth of continental lithosphere. |
---|---|
ISSN: | 0091-7613 1943-2682 |
DOI: | 10.1130/G50656.1 |