Loading…
Pb and Hf isotope evidence for mantle enrichment processes and melt interactions in the lower crust and lithospheric mantle in Miocene orogenic volcanic rocks from Monte Arcuentu (Sardinia, Italy)
Miocene (ca. 18 Ma) subduction-related basalts and basaltic andesites from Monte Arcuentu, southern Sardinia, Italy, show a remarkable correlation between 87Sr/86Sr (from ∼0.705 to ∼0.711) over a small range of SiO2 (∼51-58 wt%) that contrasts with most other orogenic volcanic suites worldwide. New...
Saved in:
Published in: | Geosphere (Boulder, Colo.) Colo.), 2018-06, Vol.14 (3), p.926-950 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Miocene (ca. 18 Ma) subduction-related basalts and basaltic andesites from Monte Arcuentu, southern Sardinia, Italy, show a remarkable correlation between 87Sr/86Sr (from ∼0.705 to ∼0.711) over a small range of SiO2 (∼51-58 wt%) that contrasts with most other orogenic volcanic suites worldwide. New high-precision Pb and Hf isotope data help to constrain the petrogenesis of these rocks. The most primitive Monte Arcuentu rocks (MgO >8.5 wt%) were sourced from a mantle wedge metasomatized by melts derived from terrigenous sediment, likely derived from Archean terranes of northern Africa. This gave rise to magmas with high 87Sr/86Sr (0.705-0.709) and 207Pb/204Pb (15.65-15.67) with moderate εHf (-1 to +8) and εNd (-6 to +1), but it does not account for the full range of compositions observed. More evolved rocks (MgO |
---|---|
ISSN: | 1553-040X 1553-040X |
DOI: | 10.1130/GES01584.1 |