Loading…
Search for Atmospheric Wave Signatures by Simultaneous Collocated Barometer and Gravimeter Measurements
A spatial distribution model for air density perturbations during the propagation of internal gravity waves (IGWs) is used to derive estimates for gravity perturbations generated by these waves. The estimates show that superconducting gravimeters are capable of detecting IGWs generated by any wave s...
Saved in:
Published in: | Izvestiya. Atmospheric and oceanic physics 2020, Vol.56 (1), p.43-51 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A spatial distribution model for air density perturbations during the propagation of internal gravity waves (IGWs) is used to derive estimates for gravity perturbations generated by these waves. The estimates show that superconducting gravimeters are capable of detecting IGWs generated by any wave source in the lower atmosphere. Series of barometric and gravimetric measurements at Moxa, Germany (50.6° N, 11.6° E), for 2000–2018 are processed using digital filtering to search for pressure and gravity perturbations with time scales of ~10 min to ~10 h. The annual change in the atmospheric pressure variation with variation scales on the order of and less than 1 h shows a summer maximum, which disappears at higher scales. The summer maximum can be attributed to the effect of IGWs with periods on the order of and less than 1 h from convective clouds that occur in the summer half of the year. The annual change in the gravity variation shows maximums in winter and summer for all the variation scales under consideration. They can be explained by modulating the solar semidiurnal gravitational tide by a semiannual change in the perturbation of the Earth’s gravitational potential. |
---|---|
ISSN: | 0001-4338 1555-628X |
DOI: | 10.1134/S0001433820010065 |