Loading…
On the Riesz constants for systems of integer translates
In this paper, one-parameter families of integer translates of the Gaussian and Lorentz functions are studied. For a Lorentz function, we obtain formulas for the coefficients of the series defining node functions and show that the limit value of node functions is given by a sample function. For syst...
Saved in:
Published in: | Mathematical Notes 2014-07, Vol.96 (1-2), p.228-238 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513 |
container_end_page | 238 |
container_issue | 1-2 |
container_start_page | 228 |
container_title | Mathematical Notes |
container_volume | 96 |
creator | Kiselev, E. A. Minin, L. A. Novikov, I. Ya Sitnik, S. M. |
description | In this paper, one-parameter families of integer translates of the Gaussian and Lorentz functions are studied. For a Lorentz function, we obtain formulas for the coefficients of the series defining node functions and show that the limit value of node functions is given by a sample function. For systems of translates generated by the Gaussian and Lorentz functions as well as by the node functions related to them, we obtain explicit expressions for the Riesz constants and study the parameter-dependent behavior of these constants. While proving some of the results of this paper, we establish the monotonicity of a special ratio of two Jacobi theta functions, a fact which is of interest in itself. |
doi_str_mv | 10.1134/S0001434614070244 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434614070244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S0001434614070244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513</originalsourceid><addsrcrecordid>eNp9j91KxDAQhYMoWFcfwLu8QHWmTdP0UhZ_FhYW_LkuaTvRLrupZOLF-vSmrHeCNzMM55zhO0JcI9wglur2BQBQlUqjghoKpU5EhlVd5sbU-lRks5zP-rm4YN6mCzVCJszGy_hB8nkk_pb95DlaH1m6KUg-cKQ9y8nJ0Ud6pyBjsJ53NhJfijNnd0xXv3sh3h7uX5dP-XrzuFrerfO-MCbmXd9Y7DRZR7ZrNPXDAA6bKg1dIZiaqABqLDln3dAVHSXgoTel0YBUYbkQePzbh4k5kGs_w7i34dAitHP19k_1lCmOGU5en7jb7fQVfML8J_QDp-Zb3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Riesz constants for systems of integer translates</title><source>Springer Nature</source><creator>Kiselev, E. A. ; Minin, L. A. ; Novikov, I. Ya ; Sitnik, S. M.</creator><creatorcontrib>Kiselev, E. A. ; Minin, L. A. ; Novikov, I. Ya ; Sitnik, S. M.</creatorcontrib><description>In this paper, one-parameter families of integer translates of the Gaussian and Lorentz functions are studied. For a Lorentz function, we obtain formulas for the coefficients of the series defining node functions and show that the limit value of node functions is given by a sample function. For systems of translates generated by the Gaussian and Lorentz functions as well as by the node functions related to them, we obtain explicit expressions for the Riesz constants and study the parameter-dependent behavior of these constants. While proving some of the results of this paper, we establish the monotonicity of a special ratio of two Jacobi theta functions, a fact which is of interest in itself.</description><identifier>ISSN: 0001-4346</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434614070244</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2014-07, Vol.96 (1-2), p.228-238</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513</citedby><cites>FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiselev, E. A.</creatorcontrib><creatorcontrib>Minin, L. A.</creatorcontrib><creatorcontrib>Novikov, I. Ya</creatorcontrib><creatorcontrib>Sitnik, S. M.</creatorcontrib><title>On the Riesz constants for systems of integer translates</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>In this paper, one-parameter families of integer translates of the Gaussian and Lorentz functions are studied. For a Lorentz function, we obtain formulas for the coefficients of the series defining node functions and show that the limit value of node functions is given by a sample function. For systems of translates generated by the Gaussian and Lorentz functions as well as by the node functions related to them, we obtain explicit expressions for the Riesz constants and study the parameter-dependent behavior of these constants. While proving some of the results of this paper, we establish the monotonicity of a special ratio of two Jacobi theta functions, a fact which is of interest in itself.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j91KxDAQhYMoWFcfwLu8QHWmTdP0UhZ_FhYW_LkuaTvRLrupZOLF-vSmrHeCNzMM55zhO0JcI9wglur2BQBQlUqjghoKpU5EhlVd5sbU-lRks5zP-rm4YN6mCzVCJszGy_hB8nkk_pb95DlaH1m6KUg-cKQ9y8nJ0Ud6pyBjsJ53NhJfijNnd0xXv3sh3h7uX5dP-XrzuFrerfO-MCbmXd9Y7DRZR7ZrNPXDAA6bKg1dIZiaqABqLDln3dAVHSXgoTel0YBUYbkQePzbh4k5kGs_w7i34dAitHP19k_1lCmOGU5en7jb7fQVfML8J_QDp-Zb3g</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Kiselev, E. A.</creator><creator>Minin, L. A.</creator><creator>Novikov, I. Ya</creator><creator>Sitnik, S. M.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140701</creationdate><title>On the Riesz constants for systems of integer translates</title><author>Kiselev, E. A. ; Minin, L. A. ; Novikov, I. Ya ; Sitnik, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiselev, E. A.</creatorcontrib><creatorcontrib>Minin, L. A.</creatorcontrib><creatorcontrib>Novikov, I. Ya</creatorcontrib><creatorcontrib>Sitnik, S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiselev, E. A.</au><au>Minin, L. A.</au><au>Novikov, I. Ya</au><au>Sitnik, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Riesz constants for systems of integer translates</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>96</volume><issue>1-2</issue><spage>228</spage><epage>238</epage><pages>228-238</pages><issn>0001-4346</issn><eissn>1573-8876</eissn><abstract>In this paper, one-parameter families of integer translates of the Gaussian and Lorentz functions are studied. For a Lorentz function, we obtain formulas for the coefficients of the series defining node functions and show that the limit value of node functions is given by a sample function. For systems of translates generated by the Gaussian and Lorentz functions as well as by the node functions related to them, we obtain explicit expressions for the Riesz constants and study the parameter-dependent behavior of these constants. While proving some of the results of this paper, we establish the monotonicity of a special ratio of two Jacobi theta functions, a fact which is of interest in itself.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434614070244</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2014-07, Vol.96 (1-2), p.228-238 |
issn | 0001-4346 1573-8876 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0001434614070244 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics |
title | On the Riesz constants for systems of integer translates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Riesz%20constants%20for%20systems%20of%20integer%20translates&rft.jtitle=Mathematical%20Notes&rft.au=Kiselev,%20E.%20A.&rft.date=2014-07-01&rft.volume=96&rft.issue=1-2&rft.spage=228&rft.epage=238&rft.pages=228-238&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434614070244&rft_dat=%3Ccrossref_sprin%3E10_1134_S0001434614070244%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-bc9a1b6eafeab96ecdd0f1950f1651087ee20e9aeffafdb2be887dc838601e513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |