Loading…
The Definition of a Self-Similar function in Quasi-Banach Spaces
The definition of a self-similar function is extended to quasi-Banach Lebesgue spaces. A sufficient condition for a function with given self-similarity parameters to lie in some such space is given.
Saved in:
Published in: | Mathematical Notes 2019-11, Vol.106 (5-6), p.980-985 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-c499fa787c73e30937b296a0653724f5dbfaf1c411cc5316e85acebdb6e814a73 |
container_end_page | 985 |
container_issue | 5-6 |
container_start_page | 980 |
container_title | Mathematical Notes |
container_volume | 106 |
creator | Tikhonov, Yu. V. |
description | The definition of a self-similar function is extended to quasi-Banach Lebesgue spaces. A sufficient condition for a function with given self-similarity parameters to lie in some such space is given. |
doi_str_mv | 10.1134/S0001434619110348 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434619110348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330975918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c499fa787c73e30937b296a0653724f5dbfaf1c411cc5316e85acebdb6e814a73</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczSzySbZm1r_QkFk63nJpolN2WZr0j347c1awYN4mhnee7-Bh9A50EsAxq9qSilwxgVUAJRxdYAmUEpGlJLiEE1GmYz6MTpJaZ0vEEAn6HqxsvjOOh_8zvcB9w5rXNvOkdpvfKcjdkMw35IP-HXQyZNbHbRZ4XqrjU2n6MjpLtmznzlFbw_3i9kTmb88Ps9u5sQUQu2I4VXltFTSSGYZrZhsi0poKkomC-7KZeu0A8MBjCkZCKvKTG-Xbd6Aa8mm6GLP3cb-Y7Bp16z7IYb8silYBsqyApVdsHeZ2KcUrWu20W90_GyANmNRzZ-icqbYZ1L2hncbf8n_h74ALV5oBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330975918</pqid></control><display><type>article</type><title>The Definition of a Self-Similar function in Quasi-Banach Spaces</title><source>Springer Link</source><creator>Tikhonov, Yu. V.</creator><creatorcontrib>Tikhonov, Yu. V.</creatorcontrib><description>The definition of a self-similar function is extended to quasi-Banach Lebesgue spaces. A sufficient condition for a function with given self-similarity parameters to lie in some such space is given.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434619110348</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Banach spaces ; Mathematics ; Mathematics and Statistics ; Self-similarity</subject><ispartof>Mathematical Notes, 2019-11, Vol.106 (5-6), p.980-985</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-c499fa787c73e30937b296a0653724f5dbfaf1c411cc5316e85acebdb6e814a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tikhonov, Yu. V.</creatorcontrib><title>The Definition of a Self-Similar function in Quasi-Banach Spaces</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The definition of a self-similar function is extended to quasi-Banach Lebesgue spaces. A sufficient condition for a function with given self-similarity parameters to lie in some such space is given.</description><subject>Banach spaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Self-similarity</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczSzySbZm1r_QkFk63nJpolN2WZr0j347c1awYN4mhnee7-Bh9A50EsAxq9qSilwxgVUAJRxdYAmUEpGlJLiEE1GmYz6MTpJaZ0vEEAn6HqxsvjOOh_8zvcB9w5rXNvOkdpvfKcjdkMw35IP-HXQyZNbHbRZ4XqrjU2n6MjpLtmznzlFbw_3i9kTmb88Ps9u5sQUQu2I4VXltFTSSGYZrZhsi0poKkomC-7KZeu0A8MBjCkZCKvKTG-Xbd6Aa8mm6GLP3cb-Y7Bp16z7IYb8silYBsqyApVdsHeZ2KcUrWu20W90_GyANmNRzZ-icqbYZ1L2hncbf8n_h74ALV5oBQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Tikhonov, Yu. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>The Definition of a Self-Similar function in Quasi-Banach Spaces</title><author>Tikhonov, Yu. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c499fa787c73e30937b296a0653724f5dbfaf1c411cc5316e85acebdb6e814a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Banach spaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tikhonov, Yu. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tikhonov, Yu. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Definition of a Self-Similar function in Quasi-Banach Spaces</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>106</volume><issue>5-6</issue><spage>980</spage><epage>985</epage><pages>980-985</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The definition of a self-similar function is extended to quasi-Banach Lebesgue spaces. A sufficient condition for a function with given self-similarity parameters to lie in some such space is given.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434619110348</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2019-11, Vol.106 (5-6), p.980-985 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0001434619110348 |
source | Springer Link |
subjects | Banach spaces Mathematics Mathematics and Statistics Self-similarity |
title | The Definition of a Self-Similar function in Quasi-Banach Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Definition%20of%20a%20Self-Similar%20function%20in%20Quasi-Banach%20Spaces&rft.jtitle=Mathematical%20Notes&rft.au=Tikhonov,%20Yu.%20V.&rft.date=2019-11-01&rft.volume=106&rft.issue=5-6&rft.spage=980&rft.epage=985&rft.pages=980-985&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434619110348&rft_dat=%3Cproquest_cross%3E2330975918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-c499fa787c73e30937b296a0653724f5dbfaf1c411cc5316e85acebdb6e814a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330975918&rft_id=info:pmid/&rfr_iscdi=true |