Loading…

A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property

The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence,...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical Notes 2020-07, Vol.108 (1-2), p.243-249
Main Author: Reinov, O. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-627ca6a9bac10173ca8c693bd87017f99819a8ce327142f2470275ea058f89353
container_end_page 249
container_issue 1-2
container_start_page 243
container_title Mathematical Notes
container_volume 108
creator Reinov, O. I.
description The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.
doi_str_mv 10.1134/S0001434620070251
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434620070251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430392901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-627ca6a9bac10173ca8c693bd87017f99819a8ce327142f2470275ea058f89353</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwGvrmaS3TyObbFWKCio5yVNs-0WTdYkK_bfm1JBQXoaZr7HzHwIXQK5AWDl7TMhBEpWckqIILSCIzSASrBCSsGP0WAHFzv8FJ3FuMkdcCADZEd4rJ02azzXKbXG4pn-bN0Kp7XFo64L_qt916n1Dj8F39mQttd40SfsfPpLHfveLe3ygOQcnTT6LdqLnzpEr9O7l8msmD_eP0xG88JQLlPBqTCaa7XQBggIZrQ0XLHFUorcNkpJUHlkGRVQ0oaW-VNRWU0q2UjFKjZEV3vffMRHb2OqN74PLq-sackIU1QRyCzYs0zwMQbb1F3IF4dtDaTepVn_SzNr6F4TM9etbPh1Piz6BozadT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430392901</pqid></control><display><type>article</type><title>A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property</title><source>Springer Nature</source><creator>Reinov, O. I.</creator><creatorcontrib>Reinov, O. I.</creatorcontrib><description>The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434620070251</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Approximation ; Banach spaces ; Integrals ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Mathematical Notes, 2020-07, Vol.108 (1-2), p.243-249</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-627ca6a9bac10173ca8c693bd87017f99819a8ce327142f2470275ea058f89353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Reinov, O. I.</creatorcontrib><title>A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwGvrmaS3TyObbFWKCio5yVNs-0WTdYkK_bfm1JBQXoaZr7HzHwIXQK5AWDl7TMhBEpWckqIILSCIzSASrBCSsGP0WAHFzv8FJ3FuMkdcCADZEd4rJ02azzXKbXG4pn-bN0Kp7XFo64L_qt916n1Dj8F39mQttd40SfsfPpLHfveLe3ygOQcnTT6LdqLnzpEr9O7l8msmD_eP0xG88JQLlPBqTCaa7XQBggIZrQ0XLHFUorcNkpJUHlkGRVQ0oaW-VNRWU0q2UjFKjZEV3vffMRHb2OqN74PLq-sackIU1QRyCzYs0zwMQbb1F3IF4dtDaTepVn_SzNr6F4TM9etbPh1Piz6BozadT0</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Reinov, O. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property</title><author>Reinov, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-627ca6a9bac10173ca8c693bd87017f99819a8ce327142f2470275ea058f89353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinov, O. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>108</volume><issue>1-2</issue><spage>243</spage><epage>249</epage><pages>243-249</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434620070251</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2020-07, Vol.108 (1-2), p.243-249
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_crossref_primary_10_1134_S0001434620070251
source Springer Nature
subjects 14/34
639/766/189
639/766/530
639/766/747
Approximation
Banach spaces
Integrals
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
title A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Banach%20Lattice%20Having%20the%20Approximation%20Property,%20but%20not%20Having%20the%20Bounded%20Approximation%20Property&rft.jtitle=Mathematical%20Notes&rft.au=Reinov,%20O.%20I.&rft.date=2020-07-01&rft.volume=108&rft.issue=1-2&rft.spage=243&rft.epage=249&rft.pages=243-249&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434620070251&rft_dat=%3Cproquest_cross%3E2430392901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-627ca6a9bac10173ca8c693bd87017f99819a8ce327142f2470275ea058f89353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430392901&rft_id=info:pmid/&rfr_iscdi=true