Loading…

Smooth Nonprojective Equivariant Completions of Affine Space

An open translation-equivariant embedding of the affine space into a complete nonprojective algebraic variety is constructed for any . The main tool is the theory of toric varieties. In the case , the orbit structure of the obtained action on the variety is described.

Saved in:
Bibliographic Details
Published in:Mathematical Notes 2021-05, Vol.109 (5-6), p.954-961
Main Author: Shakhmatov, K. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03
cites cdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03
container_end_page 961
container_issue 5-6
container_start_page 954
container_title Mathematical Notes
container_volume 109
creator Shakhmatov, K. V.
description An open translation-equivariant embedding of the affine space into a complete nonprojective algebraic variety is constructed for any . The main tool is the theory of toric varieties. In the case , the orbit structure of the obtained action on the variety is described.
doi_str_mv 10.1134/S0001434621050291
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434621050291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548930374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaJgHf0AdwXX1dwkbVpwMwzjAwZdVNclTW-0w7TpJO2Af2_KCC7E1eVwHvdwCLkGegvAxV1JKQXBRcaAppQVcEIiSCVP8lxmpySa6WTmz8mF99uAIAMakfuys3b8jF9sPzi7RT22B4zX-6k9KNeqfoxXtht2OLa297E18dKYtse4HJTGS3Jm1M7j1c9dkPeH9dvqKdm8Pj6vlptEM5GNiTJSKqF4LVOaQ92AQNQa0tA3VDS6VrXSUKTIG2Ykq4UwWS24YVzqBpHyBbk55oaK-wn9WG3t5PrwsmKpyAtOuRRBBUeVdtZ7h6YaXNsp91UBreaRqj8jBQ87enzQ9h_ofpP_N30DEk9oUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548930374</pqid></control><display><type>article</type><title>Smooth Nonprojective Equivariant Completions of Affine Space</title><source>Springer Nature</source><creator>Shakhmatov, K. V.</creator><creatorcontrib>Shakhmatov, K. V.</creatorcontrib><description>An open translation-equivariant embedding of the affine space into a complete nonprojective algebraic variety is constructed for any . The main tool is the theory of toric varieties. In the case , the orbit structure of the obtained action on the variety is described.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434621050291</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2021-05, Vol.109 (5-6), p.954-961</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</citedby><cites>FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shakhmatov, K. V.</creatorcontrib><title>Smooth Nonprojective Equivariant Completions of Affine Space</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>An open translation-equivariant embedding of the affine space into a complete nonprojective algebraic variety is constructed for any . The main tool is the theory of toric varieties. In the case , the orbit structure of the obtained action on the variety is described.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaJgHf0AdwXX1dwkbVpwMwzjAwZdVNclTW-0w7TpJO2Af2_KCC7E1eVwHvdwCLkGegvAxV1JKQXBRcaAppQVcEIiSCVP8lxmpySa6WTmz8mF99uAIAMakfuys3b8jF9sPzi7RT22B4zX-6k9KNeqfoxXtht2OLa297E18dKYtse4HJTGS3Jm1M7j1c9dkPeH9dvqKdm8Pj6vlptEM5GNiTJSKqF4LVOaQ92AQNQa0tA3VDS6VrXSUKTIG2Ykq4UwWS24YVzqBpHyBbk55oaK-wn9WG3t5PrwsmKpyAtOuRRBBUeVdtZ7h6YaXNsp91UBreaRqj8jBQ87enzQ9h_ofpP_N30DEk9oUw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Shakhmatov, K. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Smooth Nonprojective Equivariant Completions of Affine Space</title><author>Shakhmatov, K. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhmatov, K. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhmatov, K. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Nonprojective Equivariant Completions of Affine Space</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>109</volume><issue>5-6</issue><spage>954</spage><epage>961</epage><pages>954-961</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>An open translation-equivariant embedding of the affine space into a complete nonprojective algebraic variety is constructed for any . The main tool is the theory of toric varieties. In the case , the orbit structure of the obtained action on the variety is described.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434621050291</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2021-05, Vol.109 (5-6), p.954-961
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_crossref_primary_10_1134_S0001434621050291
source Springer Nature
subjects 14/34
639/766/189
639/766/530
639/766/747
Mathematics
Mathematics and Statistics
title Smooth Nonprojective Equivariant Completions of Affine Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Nonprojective%20Equivariant%20Completions%20of%20Affine%20Space&rft.jtitle=Mathematical%20Notes&rft.au=Shakhmatov,%20K.%20V.&rft.date=2021-05-01&rft.volume=109&rft.issue=5-6&rft.spage=954&rft.epage=961&rft.pages=954-961&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434621050291&rft_dat=%3Cproquest_cross%3E2548930374%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548930374&rft_id=info:pmid/&rfr_iscdi=true