Loading…
Smooth Nonprojective Equivariant Completions of Affine Space
An open translation-equivariant embedding of the affine space into a complete nonprojective algebraic variety is constructed for any . The main tool is the theory of toric varieties. In the case , the orbit structure of the obtained action on the variety is described.
Saved in:
Published in: | Mathematical Notes 2021-05, Vol.109 (5-6), p.954-961 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03 |
container_end_page | 961 |
container_issue | 5-6 |
container_start_page | 954 |
container_title | Mathematical Notes |
container_volume | 109 |
creator | Shakhmatov, K. V. |
description | An open translation-equivariant embedding of the affine space
into a complete nonprojective algebraic variety
is constructed for any
. The main tool is the theory of toric varieties. In the case
, the orbit structure of the obtained action on the variety
is described. |
doi_str_mv | 10.1134/S0001434621050291 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S0001434621050291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548930374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaJgHf0AdwXX1dwkbVpwMwzjAwZdVNclTW-0w7TpJO2Af2_KCC7E1eVwHvdwCLkGegvAxV1JKQXBRcaAppQVcEIiSCVP8lxmpySa6WTmz8mF99uAIAMakfuys3b8jF9sPzi7RT22B4zX-6k9KNeqfoxXtht2OLa297E18dKYtse4HJTGS3Jm1M7j1c9dkPeH9dvqKdm8Pj6vlptEM5GNiTJSKqF4LVOaQ92AQNQa0tA3VDS6VrXSUKTIG2Ykq4UwWS24YVzqBpHyBbk55oaK-wn9WG3t5PrwsmKpyAtOuRRBBUeVdtZ7h6YaXNsp91UBreaRqj8jBQ87enzQ9h_ofpP_N30DEk9oUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548930374</pqid></control><display><type>article</type><title>Smooth Nonprojective Equivariant Completions of Affine Space</title><source>Springer Nature</source><creator>Shakhmatov, K. V.</creator><creatorcontrib>Shakhmatov, K. V.</creatorcontrib><description>An open translation-equivariant embedding of the affine space
into a complete nonprojective algebraic variety
is constructed for any
. The main tool is the theory of toric varieties. In the case
, the orbit structure of the obtained action on the variety
is described.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434621050291</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematical Notes, 2021-05, Vol.109 (5-6), p.954-961</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</citedby><cites>FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shakhmatov, K. V.</creatorcontrib><title>Smooth Nonprojective Equivariant Completions of Affine Space</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>An open translation-equivariant embedding of the affine space
into a complete nonprojective algebraic variety
is constructed for any
. The main tool is the theory of toric varieties. In the case
, the orbit structure of the obtained action on the variety
is described.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaJgHf0AdwXX1dwkbVpwMwzjAwZdVNclTW-0w7TpJO2Af2_KCC7E1eVwHvdwCLkGegvAxV1JKQXBRcaAppQVcEIiSCVP8lxmpySa6WTmz8mF99uAIAMakfuys3b8jF9sPzi7RT22B4zX-6k9KNeqfoxXtht2OLa297E18dKYtse4HJTGS3Jm1M7j1c9dkPeH9dvqKdm8Pj6vlptEM5GNiTJSKqF4LVOaQ92AQNQa0tA3VDS6VrXSUKTIG2Ykq4UwWS24YVzqBpHyBbk55oaK-wn9WG3t5PrwsmKpyAtOuRRBBUeVdtZ7h6YaXNsp91UBreaRqj8jBQ87enzQ9h_ofpP_N30DEk9oUw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Shakhmatov, K. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Smooth Nonprojective Equivariant Completions of Affine Space</title><author>Shakhmatov, K. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhmatov, K. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhmatov, K. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Nonprojective Equivariant Completions of Affine Space</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>109</volume><issue>5-6</issue><spage>954</spage><epage>961</epage><pages>954-961</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>An open translation-equivariant embedding of the affine space
into a complete nonprojective algebraic variety
is constructed for any
. The main tool is the theory of toric varieties. In the case
, the orbit structure of the obtained action on the variety
is described.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434621050291</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2021-05, Vol.109 (5-6), p.954-961 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S0001434621050291 |
source | Springer Nature |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Mathematics Mathematics and Statistics |
title | Smooth Nonprojective Equivariant Completions of Affine Space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Nonprojective%20Equivariant%20Completions%20of%20Affine%20Space&rft.jtitle=Mathematical%20Notes&rft.au=Shakhmatov,%20K.%20V.&rft.date=2021-05-01&rft.volume=109&rft.issue=5-6&rft.spage=954&rft.epage=961&rft.pages=954-961&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434621050291&rft_dat=%3Cproquest_cross%3E2548930374%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-af77a4a3b75081bd14eecc15143157fcbabac195e3d2f72b44f6b43f237cdee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548930374&rft_id=info:pmid/&rfr_iscdi=true |